Multiscale Geographically Weighted Regression (MGWR)

比例(比率) 计算机科学 地理加权回归模型 地理 数据挖掘 空间分析 空间生态学 空间异质性 统计 数学 地图学 生态学 生物
作者
A. Stewart Fotheringham,Wenbai Yang,Wei Kang
出处
期刊:Annals of the American Association of Geographers [Taylor & Francis]
卷期号:107 (6): 1247-1265 被引量:944
标识
DOI:10.1080/24694452.2017.1352480
摘要

Scale is a fundamental geographic concept, and a substantial literature exists discussing the various roles that scale plays in different geographical contexts. Relatively little work exists, though, that provides a means of measuring the geographic scale over which different processes operate. Here we demonstrate how geographically weighted regression (GWR) can be adapted to provide such measures. GWR explores the potential spatial nonstationarity of relationships and provides a measure of the spatial scale at which processes operate through the determination of an optimal bandwidth. Classical GWR assumes that all of the processes being modeled operate at the same spatial scale, however. The work here relaxes this assumption by allowing different processes to operate at different spatial scales. This is achieved by deriving an optimal bandwidth vector in which each element indicates the spatial scale at which a particular process takes place. This new version of GWR is termed multiscale geographically weighted regression (MGWR), which is similar in intent to Bayesian nonseparable spatially varying coefficients (SVC) models, although potentially providing a more flexible and scalable framework in which to examine multiscale processes. Model calibration and bandwidth vector selection in MGWR are conducted using a back-fitting algorithm. We compare the performance of GWR and MGWR by applying both frameworks to two simulated data sets with known properties and to an empirical data set on Irish famine. Results indicate that MGWR not only is superior in replicating parameter surfaces with different levels of spatial heterogeneity but provides valuable information on the scale at which different processes operate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李BO完成签到,获得积分20
1秒前
李爱国应助喝喂辉采纳,获得10
1秒前
卡卡罗特先森完成签到 ,获得积分10
1秒前
李巧儿发布了新的文献求助10
1秒前
传统的裘完成签到,获得积分10
1秒前
黑猫警长发布了新的文献求助10
2秒前
冷傲迎梦发布了新的文献求助10
2秒前
飞宇发布了新的文献求助10
3秒前
starkisses完成签到,获得积分10
3秒前
精明的火车完成签到,获得积分10
3秒前
纪震宇完成签到,获得积分10
4秒前
呜呼完成签到,获得积分10
4秒前
4秒前
星星完成签到,获得积分10
4秒前
mingkle完成签到,获得积分10
4秒前
香蕉芷蕾完成签到,获得积分20
5秒前
华清引完成签到,获得积分10
5秒前
6秒前
田様应助彩云追月采纳,获得10
6秒前
okay好好发布了新的文献求助20
7秒前
Leif应助黑猫警长采纳,获得20
7秒前
上官若男应助空空如也采纳,获得30
7秒前
JL完成签到,获得积分10
8秒前
小虫学长应助zyfzyf采纳,获得30
8秒前
善学以致用应助zmy采纳,获得10
9秒前
星辰大海应助hehe采纳,获得10
9秒前
领导范儿应助JJJJJin采纳,获得10
9秒前
小超超应助popo6150采纳,获得10
11秒前
陨yue发布了新的文献求助10
11秒前
季风气候完成签到 ,获得积分10
11秒前
zz驳回了一一应助
11秒前
科研助手6应助虚幻白桃采纳,获得10
11秒前
12秒前
12秒前
Mado完成签到,获得积分10
13秒前
星辰大海应助杨大大采纳,获得10
13秒前
单薄电话发布了新的文献求助10
15秒前
li8097完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093