Multiscale Geographically Weighted Regression (MGWR)

比例(比率) 计算机科学 地理加权回归模型 地理 数据挖掘 空间分析 空间生态学 空间异质性 统计 数学 地图学 生态学 生物
作者
A. Stewart Fotheringham,Wenbai Yang,Wei Kang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:107 (6): 1247-1265 被引量:1202
标识
DOI:10.1080/24694452.2017.1352480
摘要

Scale is a fundamental geographic concept, and a substantial literature exists discussing the various roles that scale plays in different geographical contexts. Relatively little work exists, though, that provides a means of measuring the geographic scale over which different processes operate. Here we demonstrate how geographically weighted regression (GWR) can be adapted to provide such measures. GWR explores the potential spatial nonstationarity of relationships and provides a measure of the spatial scale at which processes operate through the determination of an optimal bandwidth. Classical GWR assumes that all of the processes being modeled operate at the same spatial scale, however. The work here relaxes this assumption by allowing different processes to operate at different spatial scales. This is achieved by deriving an optimal bandwidth vector in which each element indicates the spatial scale at which a particular process takes place. This new version of GWR is termed multiscale geographically weighted regression (MGWR), which is similar in intent to Bayesian nonseparable spatially varying coefficients (SVC) models, although potentially providing a more flexible and scalable framework in which to examine multiscale processes. Model calibration and bandwidth vector selection in MGWR are conducted using a back-fitting algorithm. We compare the performance of GWR and MGWR by applying both frameworks to two simulated data sets with known properties and to an empirical data set on Irish famine. Results indicate that MGWR not only is superior in replicating parameter surfaces with different levels of spatial heterogeneity but provides valuable information on the scale at which different processes operate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
1秒前
vdfr发布了新的文献求助10
1秒前
1秒前
风清扬发布了新的文献求助10
1秒前
伟卫发布了新的文献求助10
1秒前
sasserty发布了新的文献求助10
2秒前
元元堡堡完成签到 ,获得积分20
3秒前
4秒前
晴雨发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
向前完成签到,获得积分10
5秒前
直率的大米完成签到,获得积分10
6秒前
lt0217完成签到,获得积分10
6秒前
7秒前
我要去看星星完成签到 ,获得积分10
7秒前
甜美的飞丹完成签到,获得积分10
7秒前
王小乔完成签到 ,获得积分10
8秒前
小魔王完成签到,获得积分20
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
陈佳利完成签到,获得积分20
9秒前
xian完成签到,获得积分20
11秒前
12秒前
阿冲发布了新的文献求助10
12秒前
12秒前
renmeitao66_3发布了新的文献求助30
12秒前
13秒前
14秒前
wanci应助飞翔的企鹅采纳,获得10
16秒前
17秒前
nuoyefenfei发布了新的文献求助10
17秒前
18秒前
LinX发布了新的文献求助10
18秒前
Madao完成签到,获得积分10
19秒前
小渠睡不醒完成签到,获得积分10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620818
求助须知:如何正确求助?哪些是违规求助? 4705416
关于积分的说明 14931932
捐赠科研通 4763450
什么是DOI,文献DOI怎么找? 2551239
邀请新用户注册赠送积分活动 1513799
关于科研通互助平台的介绍 1474704