Compatibility and challenges in machine learning approach for structural crack assessment

计算机科学 原始数据 结构健康监测 机器学习 数据提取 人工智能 相容性(地球化学) 实验数据 选择(遗传算法) 数据挖掘 工程类 结构工程 统计 化学工程 梅德林 数学 程序设计语言 法学 政治学
作者
Intisar Omar,Muhammad Khan,Andrew Starr
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (5): 2481-2502 被引量:17
标识
DOI:10.1177/14759217211061399
摘要

Structural health monitoring and assessment (SHMA) is exceptionally essential for preserving and sustaining any mechanical structure’s service life. A successful assessment should provide reliable and resolute information to maintain the continuous performance of the structure. This information can effectively determine crack progression and its overall impact on the structural operation. However, the available sensing techniques and methods for performing SHMA generate raw measurements that require significant data processing before making any valuable predictions. Machine learning (ML) algorithms (supervised and unsupervised learning) have been extensively used for such data processing. These algorithms extract damage-sensitive features from the raw data to identify structural conditions and performance. As per the available published literature, the extraction of these features has been quite random and used by academic researchers without a suitability justification. In this paper, a comprehensive literature review is performed to emphasise the influence of damage-sensitive features on ML algorithms. The selection and suitability of these features are critically reviewed while processing raw data obtained from different materials (metals, composites and polymers). It has been found that an accurate crack prediction is only possible if the selection of damage-sensitive features and ML algorithms is performed based on available raw data and structure material type. This paper also highlights the current challenges and limitations during the mentioned sections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秀儿发布了新的文献求助10
2秒前
忠诚卫士发布了新的文献求助10
2秒前
更深的蓝发布了新的文献求助10
2秒前
平常冬灵完成签到,获得积分10
4秒前
4秒前
穆亦擎发布了新的文献求助10
5秒前
6秒前
Hello应助musicyy222采纳,获得10
7秒前
8秒前
更深的蓝完成签到,获得积分10
8秒前
英吉利25发布了新的文献求助30
9秒前
9秒前
韩韩发布了新的文献求助10
10秒前
11秒前
11秒前
张姣姣发布了新的文献求助10
14秒前
研友_VZGvVn发布了新的文献求助10
14秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
yyds应助xuan采纳,获得50
17秒前
研友_VZGvVn完成签到,获得积分10
18秒前
19秒前
善学以致用应助echo采纳,获得10
20秒前
小二郎应助想吃脆脆采纳,获得10
20秒前
20秒前
21秒前
秀儿完成签到,获得积分10
21秒前
22秒前
22秒前
wuqi发布了新的文献求助10
22秒前
24秒前
科目三应助韩韩采纳,获得10
25秒前
Ava应助阿难采纳,获得10
25秒前
whysoserious发布了新的文献求助50
26秒前
26秒前
新世界陆战队完成签到 ,获得积分10
26秒前
27秒前
大模型应助Judy采纳,获得10
27秒前
无极微光应助奶油采纳,获得20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532789
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578210
捐赠科研通 4561414
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443