凝聚态物理
超顺磁性
孤子
自旋波
自旋(空气动力学)
飞秒
微磁学
材料科学
进动
激发
纳米颗粒
铁磁性
物理
纳米技术
磁化
激光器
光学
磁场
量子力学
非线性系统
热力学
作者
Diego Turenne,Alexander Yaroslavtsev,Xiaocui Wang,Vivek Unikandanuni,Igor Vaskivskyi,Michael Schneider,Emmanuelle Jal,Robert Carley,Giuseppe Mercurio,Rafael Gort,Naman Agarwal,Benjamin Van Kuiken,Laurent Mercadier,Justine Schlappa,Loïc Le Guyader,Natalia Gerasimova,Martin Teichmann,D. Lomidze,A. Castoldi,Dmitrii V. Potorochin
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2022-04-01
卷期号:8 (13): eabn0523-eabn0523
被引量:23
标识
DOI:10.1126/sciadv.abn0523
摘要
Magnetic nanoparticles such as FePt in the L1 0 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub–10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI