Research progress of light and elevated temperature-induced degradation in silicon solar cells: A review

晶体硅 材料科学 太阳能电池 光伏系统 薄脆饼 单晶硅 降级(电信) 工程物理 光电子学 聚合物太阳能电池 钝化 量子点太阳电池 纳米技术 图层(电子) 电气工程 工程类
作者
Litao Ning,Lihui Song,Jun Zhang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:912: 165120-165120 被引量:22
标识
DOI:10.1016/j.jallcom.2022.165120
摘要

At present, passivated emitter and rear cell (PERC) solar cells dominate the photovoltaic industry. However, light and elevated temperature-induced degradation (LeTID) is an important issue responsible for the reduction of PERC efficiency, which may lead to up to 16% relative performance losses in multicrystalline silicon solar cells, and this degradation occurs in almost all types of silicon wafers. Even in next-generation silicon solar cells like Tunnelling oxide passivated contact (TOPCon) and Heterojunction with Intrinsic Thin-layer (HJT) solar cells, LeTID can still cause an efficiency loss up to 1% relative. LeTID is a long process in terms of time during the whole cycle of degradation and regeneration, which will seriously affect the conversion efficiency and stability of solar modules, and hence increase the cost of electricity generated by solar cells. Furthermore, after years of research on LeTID, researchers are yet to determine the specific cause of LeTID. In this paper, we refer to specific literature, briefly describe the development history of LeTID, introduce the phenomena of LeTID in crystalline silicon solar cells, and describe its characteristics. In addition, we also analyzed the fundamental causes of LeTID, and found that the cause may be related to metal impurities or hydrogen contained in solar cells. At present, in view of the participation of hydrogen in LeTID and other existing related theories, this paper introduces several methods to inhibit LeTID in crystalline silicon. Finally, the content of this paper is summarized, and the development of solar cells in the future is prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芮rich完成签到,获得积分10
刚刚
柯一一完成签到,获得积分0
刚刚
朴实的烤鸡完成签到,获得积分10
刚刚
xin66yang完成签到,获得积分10
刚刚
DamenS发布了新的文献求助10
1秒前
雨过无尘发布了新的文献求助10
1秒前
1秒前
张天奕发布了新的文献求助60
1秒前
2秒前
3秒前
美好斓发布了新的文献求助10
3秒前
跳跃的如豹完成签到 ,获得积分10
4秒前
乐乐应助灵巧依云采纳,获得10
5秒前
Akim应助二东采纳,获得10
5秒前
5秒前
6秒前
6秒前
朴实钥匙发布了新的文献求助10
6秒前
自然剑完成签到,获得积分10
6秒前
栗子完成签到,获得积分10
7秒前
7秒前
8秒前
儒雅短靴完成签到,获得积分10
8秒前
8秒前
徐磊发布了新的文献求助10
10秒前
传奇3应助雨过无尘采纳,获得10
10秒前
乐乐应助ZhaiSherry采纳,获得10
10秒前
DamenS发布了新的文献求助10
11秒前
fire发布了新的文献求助10
11秒前
田様应助lxr采纳,获得10
11秒前
11秒前
咖喱完成签到,获得积分10
11秒前
ZheyuYao完成签到,获得积分10
12秒前
化学学渣发布了新的文献求助10
12秒前
姜菲菲发布了新的文献求助10
12秒前
13秒前
13秒前
花花子完成签到,获得积分10
14秒前
14秒前
xin66yang发布了新的文献求助10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621253
求助须知:如何正确求助?哪些是违规求助? 4705984
关于积分的说明 14934440
捐赠科研通 4765084
什么是DOI,文献DOI怎么找? 2551495
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746