Missing Shots and Near-Offset Reconstruction of Marine Seismic Data With Towered Streamers via Self-Supervised Deep Learning

计算机科学 偏移量(计算机科学) 残余物 深度学习 缺少数据 地质学 算法 人工智能 地震学 模式识别(心理学) 机器学习 程序设计语言
作者
Benfeng Wang,Dong Seog Han,Jiakuo Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-9 被引量:7
标识
DOI:10.1109/tgrs.2022.3172145
摘要

Marine seismic data with towered streamers have played an important role in marine exploration. However, the distance between adjacent sources and the distance between adjacent receivers/channels are inconsistent (i.e., like regularly missing shots) and near-offset information is unrecorded, which can decrease the performances of surface-related multiple elimination (SRME) and seismic migration. Traditional algorithms to provide prestack seismic data with consistent trace interval and to recover near-offset data have some drawbacks, including low efficiency of computation and super-parameter selection by trial and error. Thus, we propose a novel self-supervised deep learning (DL) algorithm to reconstruct regularly missing shots and recover near-offset information with an improved U-net by combining U-net and residual learning of ResNet. Via the spatial reciprocity of Green's function, common shot gathers (CSGs) have similar features as common receiver gathers (CRGs). The reconstruction performances of regularly missing shots in CRGs can be guaranteed by using the network that is trained and validated by adaptively extracted CSGs. To reconstruct near-offset information of CSGs, we first construct pseudo-seismic data with the dip approaching 0 at near-offset parts by a rotation-truncation strategy. Pseudo-seismic data can be regarded as seismic data with approximate near-offset information to train and validate the designed network, which is later used to reconstruct near-offset information for CSGs. Finally, field marine seismic data with towered streamers is used to demonstrate the validity and effectiveness of the proposed self-supervised algorithm in reconstructing regularly missing shots and recovering near-offset information, which are beneficial for subsequent processing of seismic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小熊猫完成签到,获得积分10
1秒前
dwbh完成签到,获得积分10
1秒前
2秒前
思源应助纤云弄巧采纳,获得30
2秒前
2秒前
噜噜完成签到,获得积分10
3秒前
赘婿应助JamesYang采纳,获得10
3秒前
lichunrong发布了新的文献求助10
4秒前
高高完成签到,获得积分10
4秒前
jack_kunn发布了新的文献求助10
4秒前
4秒前
llll完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助小熊猫采纳,获得10
5秒前
沉默沛岚发布了新的文献求助20
5秒前
善学以致用应助JamesYang采纳,获得10
5秒前
领导范儿应助hans996采纳,获得10
5秒前
铠甲勇士发布了新的文献求助10
7秒前
7秒前
HXL发布了新的文献求助10
7秒前
汝矣发布了新的文献求助10
7秒前
NexusExplorer应助Arthur采纳,获得10
8秒前
8秒前
轻松元柏完成签到,获得积分10
8秒前
8秒前
爆米花应助风是甜的采纳,获得20
9秒前
我是老大应助蒸盐粥采纳,获得10
9秒前
夹夹完成签到,获得积分10
10秒前
共享精神应助余空采纳,获得10
10秒前
10秒前
11秒前
光亮平蓝完成签到,获得积分10
11秒前
赘婿应助JamesYang采纳,获得10
11秒前
JuliannaBuls96应助xzy998采纳,获得60
12秒前
OYJH完成签到,获得积分10
12秒前
12秒前
joce完成签到,获得积分10
12秒前
oldperrier完成签到,获得积分10
13秒前
顾矜应助ZFW采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728463
求助须知:如何正确求助?哪些是违规求助? 5312850
关于积分的说明 15314159
捐赠科研通 4875631
什么是DOI,文献DOI怎么找? 2618899
邀请新用户注册赠送积分活动 1568458
关于科研通互助平台的介绍 1525134