Metal-Free Organic Phosphors toward Fast and Efficient Room-Temperature Phosphorescence

磷光 荧光粉 Atom(片上系统) 激子 设计要素和原则 主组元素 化学 半导体 自旋轨道相互作用 材料科学 纳米技术 化学物理 光电子学 过渡金属 物理 计算机科学 荧光 核物理学 凝聚态物理 有机化学 量子力学 软件工程 嵌入式系统 催化作用
作者
Wenhao Shao,Jinsang Kim
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (11): 1573-1585 被引量:93
标识
DOI:10.1021/acs.accounts.2c00146
摘要

ConspectusMetal-free purely organic phosphors (POPs) are promising materials for display technologies, solid-state lighting, and sensors platforms because of their advantageous properties such as large design windows, easy processability, and economic material cost. Unlike inorganic semiconductors, creating the conditions for triplet excitons to produce light in organic materials is a demanding task because of the presence of electron spin configurations that undergo spin-forbidden transitions, which is usually facilitated by spin-orbit coupling (SOC). In the absence of heavy metals, however, the SOC efficiency in POPs remains low, and consequently, external nonradiative photophysical processes will also severely affect triplet excitons. Addressing these challenges requires the development of rational molecular design principles to accurately account for how all conceivable structural, electronic, chemical, compositional factors affect materials performance.This Account summarizes important molecular design and matrix engineering strategies to tackle the two key challenges for POPs─boosting SOC efficiencies and suppressing nonradiative decays. We start by reviewing the fundamental understanding of internal and external factors affecting the emission efficiencies of POPs, including the theory behind SOC and the origin of nonradiative decays. Subsequently, we discuss the design of contemporary POP systems on the basis of research insights from our group and others, where SOC is mostly promoted by heavy atom effects and the El-Sayed rule. On one hand, nonmetal heavy atoms including Br, I, or Se provide the heavy atom effects to boost SOC. On the other hand, the El-Sayed rule addresses the necessity of orbital angular momentum change in SOC and the general utilization of carbonyl, heterocyclic rings, and other moieties with rich nonbonding electrons. Because of the slow-decaying nature of triplet excitons, engineering the matrices of POPs is critical to effectively suppress collisional quenching as the major nonradiative decay route, thus achieving POPs with decent room temperature quantum efficiency. For that purpose, crystalline or rigid amorphous matrices have been implemented along with specific intermolecular forces between POPs and their environment.Despite the great efforts made in the past decade, the intrinsic SOC efficiencies of POPs remain low, and their emission lifetimes are pinned in the millisecond to second regime. While this is beneficial for POPs with ultralong emission, designing high-SOC POPs with simultaneous fast decay and high quantum efficiencies is particularly advantageous for display systems. Following the design of contemporary POPs, we will discuss molecular design descriptors that could potentially break the current limit to boost internal SOC in purely organic materials. Our recently developed concept of "heavy atom oriented orbital angular momentum manipulation" will be discussed, accompanied by a rich and expanded library of fast and efficient POP molecules, which serves as a stepping stone into the future of this field. We will conclude this Account by discussing the noteworthy application of POPs in organic light-emitting diodes (OLEDs), solid-state lighting, and sensors, as well as the remaining challenges in the design of fast and efficient POPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舒心的绮露完成签到,获得积分10
1秒前
qqq完成签到 ,获得积分10
2秒前
闵夏完成签到,获得积分10
2秒前
小钱钱完成签到,获得积分10
2秒前
mikefei完成签到,获得积分10
3秒前
雪儿完成签到 ,获得积分10
3秒前
黑风小妖完成签到,获得积分10
4秒前
htm426发布了新的文献求助10
4秒前
orixero应助舒心的绮露采纳,获得10
5秒前
缓慢夜阑发布了新的文献求助10
5秒前
seedcui完成签到,获得积分10
6秒前
nuonuomimi完成签到,获得积分10
6秒前
慕青应助八月采纳,获得10
8秒前
Maglev完成签到,获得积分10
8秒前
Akim应助司空三问采纳,获得10
8秒前
酥糖完成签到,获得积分10
9秒前
科研通AI2S应助蒋婷采纳,获得10
10秒前
dollarpuff完成签到 ,获得积分10
10秒前
samtol完成签到,获得积分10
10秒前
Hzz完成签到,获得积分10
10秒前
Accept应助Rex采纳,获得10
12秒前
12秒前
就是你啦完成签到,获得积分10
13秒前
思源应助武若剑采纳,获得10
13秒前
小黄鱼完成签到,获得积分10
13秒前
好吃的烤雞完成签到,获得积分10
14秒前
缓慢夜阑完成签到,获得积分10
14秒前
小李给我支棱起来完成签到,获得积分10
14秒前
秀丽的曼雁完成签到,获得积分10
14秒前
畅跑daily完成签到,获得积分10
15秒前
1L完成签到,获得积分10
15秒前
小强完成签到 ,获得积分10
15秒前
子民完成签到,获得积分10
15秒前
htm426完成签到,获得积分10
16秒前
16秒前
17秒前
八月完成签到,获得积分10
17秒前
贤惠的迎夏完成签到,获得积分10
18秒前
齐齐完成签到,获得积分10
18秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857375
求助须知:如何正确求助?哪些是违规求助? 3399845
关于积分的说明 10614347
捐赠科研通 3122201
什么是DOI,文献DOI怎么找? 1721243
邀请新用户注册赠送积分活动 828996
科研通“疑难数据库(出版商)”最低求助积分说明 777972