PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Linlin Ge,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bookgg完成签到 ,获得积分10
1秒前
4秒前
忧伤的冰薇完成签到 ,获得积分10
4秒前
abbb发布了新的文献求助10
6秒前
6秒前
7秒前
小雪糕完成签到,获得积分10
7秒前
西瓜刀发布了新的文献求助10
8秒前
Orange应助研友_LjMy08采纳,获得10
10秒前
shelemi发布了新的文献求助30
10秒前
苹果麦片完成签到,获得积分10
11秒前
11秒前
yyj完成签到,获得积分10
11秒前
12秒前
安彩青完成签到 ,获得积分10
16秒前
Emper发布了新的文献求助10
17秒前
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
波特卡斯D艾斯完成签到 ,获得积分10
22秒前
23秒前
暮雪残梅完成签到 ,获得积分10
23秒前
24秒前
Meng完成签到,获得积分10
24秒前
25秒前
whole完成签到,获得积分20
25秒前
26秒前
coffee333发布了新的文献求助10
27秒前
zy完成签到,获得积分10
27秒前
菜菜完成签到 ,获得积分10
28秒前
luckkit完成签到 ,获得积分10
29秒前
研友_LjMy08发布了新的文献求助10
30秒前
领导范儿应助zhangxinxin采纳,获得10
30秒前
NexusExplorer应助欢呼流沙采纳,获得10
33秒前
coffee333完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669