PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data

激光雷达 遥感 均方误差 计算机科学 锐化 图像分辨率 干涉合成孔径雷达 环境科学 合成孔径雷达 人工智能 地质学 数学 统计
作者
Qi Zhang,Linlin Ge,Scott Hensley,Graciela Metternicht,Chang Liu,Ruiheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 123-139 被引量:42
标识
DOI:10.1016/j.isprsjprs.2022.02.008
摘要

This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
asukaray发布了新的文献求助10
1秒前
最初完成签到,获得积分10
2秒前
2秒前
高嘉完成签到,获得积分10
3秒前
4秒前
浮游应助123采纳,获得10
4秒前
kate发布了新的文献求助10
4秒前
5秒前
6秒前
活泼的风华完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
努力奋斗发布了新的文献求助10
8秒前
镜缘发布了新的文献求助10
8秒前
8秒前
8秒前
情怀应助包容的绿蕊采纳,获得10
8秒前
小c应助宗熙江采纳,获得10
9秒前
sdzylx7发布了新的文献求助10
9秒前
慕青应助受伤金鑫采纳,获得10
10秒前
斯文败类应助闫111采纳,获得10
10秒前
11秒前
12秒前
13秒前
赵伟豪发布了新的文献求助10
13秒前
kate完成签到,获得积分10
13秒前
我是老大应助邱1111采纳,获得10
14秒前
小蘑菇应助隐形静芙采纳,获得10
14秒前
15秒前
16秒前
大胆擎苍完成签到 ,获得积分10
16秒前
方舸完成签到,获得积分10
17秒前
灵巧飞烟完成签到,获得积分10
18秒前
张凡完成签到 ,获得积分10
18秒前
19秒前
张倩发布了新的文献求助10
20秒前
21秒前
谨慎鞅完成签到,获得积分10
22秒前
wangwangxiao完成签到 ,获得积分10
22秒前
优美亦云完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4831200
求助须知:如何正确求助?哪些是违规求助? 4136406
关于积分的说明 12802672
捐赠科研通 3878845
什么是DOI,文献DOI怎么找? 2133458
邀请新用户注册赠送积分活动 1153749
关于科研通互助平台的介绍 1052062