Enhancing Programming Knowledge Tracing by Interacting Programming Skills and Student Code

计算机科学 追踪 程序设计语言 编码(集合论) 计算机程序设计 嵌入 归纳程序设计 程序性编程 程序设计范式 多媒体 数学教育 人工智能 心理学 集合(抽象数据类型)
作者
Mengxia Zhu,Siqi Han,Peng Yuan,Xuesong Lu
标识
DOI:10.1145/3506860.3506870
摘要

Programming education has received extensive attention in recent years due to the increasing demand for programming ability in almost all industries. Educational institutions have widely employed online judges for programming training, which can help teachers automatically assess programming assignments by executing students’ code with test cases. However, a more important teaching process with online judges should be to evaluate how students master each of the programming skills such as strings or pointers, so that teachers may give personalized feedback and help them proceed to the success more efficiently. Previous studies have adopted deep models of knowledge tracing to evaluate a student’s mastery level of skills during the interaction with programming exercises. However, existing models generally follow the conventional assumption of knowledge tracing that each programming exercise requires only one skill, whereas in practice a programming exercise usually inspects the comprehensive use of multiple skills. Moreover, the feature of student code is often simply concatenated with other input features without the consideration of its relationship with the inspected programming skills. To bridge the gap, we propose a simple attention-based approach to learn from student code the features reflecting the multiple programming skills inspected by each programming exercise. In particular, we first use a program embedding method to obtain the representations of student code. Then we use the skill embeddings of each programming exercise to query the embeddings of student code and form an aggregated hidden state representing how the inspected skills are used in the student code. We combine the learned hidden state with DKT (Deep Knowledge Tracing), an LSTM (Long Short-Term Memory)-based knowledge tracing model, and show the improvements over baseline model. We point out some possible directions to improve the current work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彪壮的幻丝完成签到 ,获得积分10
1秒前
微笑的水桃完成签到 ,获得积分10
1秒前
bkagyin应助phwibalki采纳,获得10
1秒前
朴实海亦完成签到,获得积分10
1秒前
小布丁发布了新的文献求助10
2秒前
Zooey旎旎完成签到,获得积分10
2秒前
lemon完成签到,获得积分10
2秒前
853225598完成签到,获得积分10
3秒前
yyy完成签到,获得积分10
3秒前
Anyemzl完成签到,获得积分10
4秒前
绵绵球完成签到,获得积分0
4秒前
建丰完成签到,获得积分10
4秒前
4秒前
ZhouYW应助飘逸澜采纳,获得10
4秒前
明理从露完成签到 ,获得积分10
5秒前
万能图书馆应助至黎采纳,获得10
5秒前
迎南完成签到,获得积分10
5秒前
Jzhang完成签到,获得积分10
5秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
6秒前
凯凯搞科研完成签到,获得积分10
6秒前
6秒前
韩龙飞完成签到,获得积分10
6秒前
majf完成签到,获得积分10
7秒前
7秒前
yanny完成签到,获得积分10
8秒前
充电宝应助ch采纳,获得10
8秒前
淋湿巴黎完成签到,获得积分10
9秒前
三叶草完成签到,获得积分10
9秒前
ENG完成签到,获得积分10
10秒前
liangmh完成签到,获得积分10
11秒前
dm完成签到,获得积分10
11秒前
orixero应助冷语采纳,获得10
12秒前
ABC2023发布了新的文献求助10
13秒前
温超完成签到,获得积分10
13秒前
13秒前
gaberella完成签到,获得积分10
14秒前
呜呼啦呼完成签到 ,获得积分10
15秒前
真理完成签到,获得积分10
15秒前
乔乔完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642