Enhancing Programming Knowledge Tracing by Interacting Programming Skills and Student Code

计算机科学 追踪 程序设计语言 编码(集合论) 集合(抽象数据类型)
作者
Mengxia Zhu,Siqi Han,Peisen Yuan,Xuesong Lu
标识
DOI:10.1145/3506860.3506870
摘要

Programming education has received extensive attention in recent years due to the increasing demand for programming ability in almost all industries. Educational institutions have widely employed online judges for programming training, which can help teachers automatically assess programming assignments by executing students' code with test cases. However, a more important teaching process with online judges should be to evaluate how students master each of the programming skills such as strings or pointers, so that teachers may give personalized feedback and help them proceed to the success more efficiently. Previous studies have adopted deep models of knowledge tracing to evaluate a student's mastery level of skills during the interaction with programming exercises. However, existing models generally follow the conventional assumption of knowledge tracing that each programming exercise requires only one skill, whereas in practice a programming exercise usually inspects the comprehensive use of multiple skills. Moreover, the feature of student code is often simply concatenated with other input features without the consideration of its relationship with the inspected programming skills. To bridge the gap, we propose a simple attention-based approach to learn from student code the features reflecting the multiple programming skills inspected by each programming exercise. In particular, we first use a program embedding method to obtain the representations of student code. Then we use the skill embeddings of each programming exercise to query the embeddings of student code and form an aggregated hidden state representing how the inspected skills are used in the student code. We combine the learned hidden state with DKT (Deep Knowledge Tracing), an LSTM (Long Short-Term Memory)-based knowledge tracing model, and show the improvements over baseline model. We point out some possible directions to improve the current work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助啥时候能退休采纳,获得10
1秒前
han完成签到 ,获得积分10
1秒前
wanci应助聪明摩托采纳,获得10
1秒前
在水一方应助过儿采纳,获得10
2秒前
缓慢的友儿完成签到,获得积分10
2秒前
谷歌发布了新的文献求助10
3秒前
aurora完成签到,获得积分10
3秒前
Alicia完成签到,获得积分10
3秒前
CipherSage应助饱满南松采纳,获得10
3秒前
小诗发布了新的文献求助10
4秒前
han关注了科研通微信公众号
4秒前
Lucas应助CosnEdge采纳,获得10
4秒前
zz完成签到,获得积分10
4秒前
5秒前
上善若水完成签到 ,获得积分10
5秒前
科目三应助折小媛采纳,获得10
5秒前
coconut完成签到,获得积分10
6秒前
陈阔完成签到 ,获得积分10
6秒前
dawei完成签到,获得积分20
6秒前
余姚发布了新的文献求助10
6秒前
归海若完成签到,获得积分10
7秒前
Orange应助柔弱曼冬采纳,获得30
8秒前
陈阔发布了新的文献求助10
8秒前
GuangqinMa发布了新的文献求助10
8秒前
lianqing完成签到,获得积分10
9秒前
9秒前
corbel完成签到,获得积分10
10秒前
11秒前
12秒前
SciGPT应助罗大壮采纳,获得10
12秒前
共享精神应助zzz采纳,获得10
13秒前
13秒前
13秒前
14秒前
bioman完成签到,获得积分20
14秒前
14秒前
14秒前
过儿发布了新的文献求助10
14秒前
14秒前
今后应助勤恳的沉鱼采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463162
求助须知:如何正确求助?哪些是违规求助? 3925999
关于积分的说明 12183055
捐赠科研通 3578605
什么是DOI,文献DOI怎么找? 1966036
邀请新用户注册赠送积分活动 1004781
科研通“疑难数据库(出版商)”最低求助积分说明 899141