Convex Maximization via Adjustable Robust Optimization

数学优化 最大化 数学 最优化问题 凸优化 熵最大化 圆锥曲线优化 正多边形 凸分析 几何学 最大熵原理 统计
作者
Aras Selvi,Aharon Ben‐Tal,R.C.M. Brekelmans,Dick den Hertog
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2091-2105 被引量:3
标识
DOI:10.1287/ijoc.2021.1134
摘要

Maximizing a convex function over convex constraints is an NP-hard problem in general. We prove that such a problem can be reformulated as an adjustable robust optimization (ARO) problem in which each adjustable variable corresponds to a unique constraint of the original problem. We use ARO techniques to obtain approximate solutions to the convex maximization problem. In order to demonstrate the complete approximation scheme, we distinguish the cases in which we have just one nonlinear constraint and multiple linear constraints. Concerning the first case, we give three examples in which one can analytically eliminate the adjustable variable and approximately solve the resulting static robust optimization problem efficiently. More specifically, we show that the norm constrained log-sum-exp (geometric) maximization problem can be approximated by (convex) exponential cone optimization techniques. Concerning the second case of multiple linear constraints, the equivalent ARO problem can be represented as an adjustable robust linear optimization problem. Using linear decision rules then returns a safe approximation of the constraints. The resulting problem is a convex optimization problem, and solving this problem gives an upper bound on the global optimum value of the original problem. By using the optimal linear decision rule, we obtain a lower bound solution as well. We derive the approximation problems explicitly for quadratic maximization, geometric maximization, and sum-of-max-linear-terms maximization problems with multiple linear constraints. Numerical experiments show that, contrary to the state-of-the-art solvers, we can approximate large-scale problems swiftly with tight bounds. In several cases, we have equal upper and lower bounds, which concludes that we have global optimality guarantees in these cases. Summary of Contribution: Maximizing a convex function over a convex set is a hard optimization problem. We reformulate this problem as an optimization problem under uncertainty, which allows us to transfer the hardness of this problem from its nonconvexity to the uncertainty of the new problem. The equivalent uncertain optimization problem can be relaxed tightly by using adjustable robust optimization techniques. In addition to building a new bridge between convex maximization and robust optimization, this approach also gives us strong algorithms that improve the state-of-the-art optimization solvers both in solution time and quality for various convex maximization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪浪山完成签到,获得积分10
1秒前
Nicole完成签到 ,获得积分10
1秒前
Dogged完成签到 ,获得积分10
2秒前
2秒前
小葛完成签到,获得积分10
2秒前
x蝎子柰柰完成签到,获得积分10
2秒前
脑洞疼应助沉默的钵钵鸡采纳,获得10
2秒前
犹豫酸奶完成签到,获得积分10
3秒前
李健应助Migrol采纳,获得10
3秒前
3秒前
5秒前
6秒前
小宋发布了新的文献求助10
7秒前
田様应助枳甜采纳,获得10
7秒前
9秒前
10秒前
1111发布了新的文献求助10
10秒前
天下无贼发布了新的文献求助10
11秒前
11秒前
11秒前
wgw完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
三尺明完成签到,获得积分10
14秒前
14秒前
在水一方应助王德俊采纳,获得10
15秒前
帅气犀牛发布了新的文献求助10
16秒前
楼沁发布了新的文献求助10
16秒前
万能图书馆应助小月986采纳,获得10
16秒前
17秒前
小马甲应助yoozii采纳,获得20
17秒前
超超完成签到,获得积分10
17秒前
18秒前
搞怪天真发布了新的文献求助10
19秒前
天下无贼完成签到,获得积分20
20秒前
21秒前
宝爸发布了新的文献求助10
22秒前
冰魂应助沉默的钵钵鸡采纳,获得10
22秒前
23秒前
23秒前
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867367
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664684
捐赠科研通 3133945
什么是DOI,文献DOI怎么找? 1728674
邀请新用户注册赠送积分活动 833052
科研通“疑难数据库(出版商)”最低求助积分说明 780550