Diagnosis of interior damage with a convolutional neural network using simulation and measurement data

卷积神经网络 学习迁移 计算机科学 深度学习 人工智能 特征(语言学) 人工神经网络 领域(数学) 模式识别(心理学) 热成像 机器学习 物理 纯数学 红外线的 哲学 光学 语言学 数学
作者
Yanqing Bao,Sankaran Mahadevan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (5): 2312-2328 被引量:10
标识
DOI:10.1177/14759217211056574
摘要

Current deep learning applications in structural health monitoring (SHM) are mostly related to surface damage such as cracks and rust. Methods using traditional image processing techniques (such as filtering and edge detection) usually face difficulties in diagnosing internal damage in thicker specimens of heterogeneous materials. In this paper, we propose a damage diagnosis framework using a deep convolutional neural network (CNN) and transfer learning, focusing on internal damage such as voids and cracks. We use thermography to study the heat transfer characteristics and infer the presence of damage in the structure. It is challenging to obtain sufficient data samples for training deep neural networks, especially in the field of SHM. Therefore we use finite element (FE) computer simulations to generate a large volume of training data for the deep neural network, considering multiple damage shapes and locations. These computer-simulated data are used along with pre-trained convolutional cores of a sophisticated computer vision-based deep convolutional network to facilitate effective transfer learning. The CNN automatically generates features for damage diagnosis as opposed to manual feature generation in traditional image processing. Systematic parameter selection study is carried out to investigate accuracy versus computational expense in generating the training data. The methodology is demonstrated with an example of damage diagnosis in concrete, a heterogeneous material, using both computer simulations and laboratory experiments. The combination of FE simulation, transfer learning and experimental data is found to achieve high accuracy in damage localization with affordable effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
因一发布了新的文献求助10
刚刚
张青争完成签到,获得积分10
1秒前
1秒前
2秒前
星期八完成签到,获得积分10
2秒前
山丘发布了新的文献求助10
3秒前
尹冰露发布了新的文献求助10
3秒前
4秒前
Ava应助从容傲柏采纳,获得10
4秒前
4秒前
Alone离殇完成签到 ,获得积分10
5秒前
Crazy_Runner发布了新的文献求助10
5秒前
无花果应助zong采纳,获得10
6秒前
6秒前
科研通AI5应助sunce1990采纳,获得10
6秒前
心系天下完成签到,获得积分10
7秒前
kakavia完成签到,获得积分10
7秒前
酷酷银耳汤完成签到,获得积分10
8秒前
刘星星发布了新的文献求助10
8秒前
科研能发布了新的文献求助10
8秒前
Ghhhhn完成签到,获得积分10
8秒前
活泼水桃完成签到,获得积分10
9秒前
10秒前
222发布了新的文献求助30
10秒前
SYLH应助森ok采纳,获得10
10秒前
沉默沛白完成签到,获得积分10
12秒前
田様应助高球球采纳,获得10
13秒前
我心向明月完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
搜集达人应助aaaabc采纳,获得10
16秒前
yang完成签到,获得积分10
16秒前
16秒前
Liu发布了新的文献求助10
17秒前
17秒前
wendydqw发布了新的文献求助10
17秒前
Tian完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831948
求助须知:如何正确求助?哪些是违规求助? 3374282
关于积分的说明 10484141
捐赠科研通 3094156
什么是DOI,文献DOI怎么找? 1703342
邀请新用户注册赠送积分活动 819390
科研通“疑难数据库(出版商)”最低求助积分说明 771472