医学
置信区间
内科学
单变量分析
神经组阅片室
核医学
神经学
多元分析
精神科
作者
JiaQian Shi,Hang Wu,Zheng Dong,Xianxian Liang,QuanHui Liu,Wusheng Zhu,Changsheng Zhou,Mengjie Lu,Jia Liu,Xiaoqin Su,Guangming Lu,Xiaoqing Cheng
出处
期刊:European Radiology
[Springer Science+Business Media]
日期:2022-01-06
卷期号:32 (4): 2771-2780
被引量:14
标识
DOI:10.1007/s00330-021-08443-2
摘要
Net water uptake (NWU) has been shown to have a linear relationship with brain edema. Based on an automated-Alberta Stroke Program Early Computed Tomography Score (ASPECTS) technique, we automatically derived NWU from baseline multimodal computed tomography (CT), namely ASPECTS-NWU. We aimed to determine if ASPECTS-NWU can predict the development of malignant cerebral edema (MCE).One hundred and forty-six patients with large-vessel occlusion were retrospectively enrolled. Quantitative NWU based on automated-ASPECTS was measured both on nonenhanced CT (NECT) and CT angiography (CTA), namely NECT-ASPECT-NWU and CTA-ASPECTS-NWU. The correlation between ASPECTS-NWU and cerebral edema (CED) grades was calculated using Spearman rank correlation. Univariate logistic regression was used to assess the effect of radiological and clinical features on MCE, and a multivariable model with significant factors from the univariate regression analysis was built. Receiver operating characteristic (ROC) was obtained and area under curve (AUC) was compared.CTA-ASPECTS-NWU had a moderate positive correlation with CED grades (r = 0.62; 95% confidence interval [CI], 0.51-0.71; p < 0.001). The CTA-ASPECTS-NWU performed better than the NECT-ASPECTS-NWU with AUC: 0.88 vs. 0.71 (p < 0.001). Multivariable logistic regression model integrating CTA-ASPECTS-NWU, collateral score, and age showed the CTA-ASPECTS-NWU was an independent predictor of MCE with an AUC of 0.94 (95% CI: 0.90-0.98; p < 0.001).This study demonstrates that ASPECTS-NWU is a quantitative predictor of MCE after large-vessel occlusion of the middle cerebral artery territory. The multivariable logistic regression model may enhance the identification of patients with MCE needing anti-edematous treatment.• The automated-ASPECTS technique can automatically detect the affected regions with early ischemic changes and NWU could be manually calculated. • The CTA-ASPECTS-NWU performs better than the NECT-ASPECTS-NWU on predicting the development of MCE. • The multivariable logistic regression model may enhance the identification of patients with MCE needing anti-edematous treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI