Predictive Performance of Pharmacokinetic Model-Based Virtual Trials of Vancomycin in Neonates: Mathematics Matches Clinical Observation

加药 医学 万古霉素 临床试验 药代动力学 重症监护医学 药理学 内科学 遗传学 生物 细菌 金黄色葡萄球菌
作者
Bu‐Fan Yao,Yue‐E Wu,Bo‐Hao Tang,Guo‐Xiang Hao,Evelyne Jacqz‐Aigrain,John van den Anker,Wei Zhao
出处
期刊:Clinical Pharmacokinectics [Adis, Springer Healthcare]
卷期号:61 (7): 1027-1038 被引量:4
标识
DOI:10.1007/s40262-022-01128-z
摘要

Vancomycin is frequently used to treat Gram-positive bacterial infections in neonates. However, there is still no consensus on the optimal initial dosing regimen. This study aimed to assess the performance of pharmacokinetic model-based virtual trials to predict the dose-exposure relationship of vancomycin in neonates.The PubMed database was searched for clinical trials of vancomycin in neonates that reported the percentage of target attainment. Monte Carlo simulations were performed using nonlinear mixed-effect modeling to predict the dose-exposure relationship, and the differences in outcomes between virtual trials and real-world data in clinical studies were calculated.A total of 11 studies with 14 dosing groups were identified from the literature to evaluate dose-exposure relationships. For the ten dosing groups where the surrogate marker for exposure was the trough concentration, the mean ± standard deviation (SD) for the target attainment between original studies and virtual trials was 3.0 ± 7.3%. Deviations between - 10 and 10% accounted for 80% of the included dosing groups. For the other four dosing groups where the surrogate marker for exposure was concentration during continuous infusion, all deviations were between - 10 and 10%, and the mean ± SD value was 2.9 ± 4.5%.The pharmacokinetic model-based virtual trials of vancomycin exhibited good predictive performance for dose-exposure relationships in neonates. These results might be used to assist the optimization of dosing regimens in neonatal practice, avoiding the need for trial and error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏雪瑶完成签到 ,获得积分10
3秒前
他忽然的人完成签到 ,获得积分10
8秒前
高速旋转老沁完成签到 ,获得积分10
12秒前
mdjsf完成签到,获得积分10
13秒前
科研小白书hz完成签到 ,获得积分10
14秒前
xyzlancet完成签到,获得积分10
16秒前
Anonymous完成签到,获得积分10
17秒前
研友_西门孤晴完成签到,获得积分10
19秒前
戴衡霞完成签到,获得积分10
21秒前
24秒前
jjx1005完成签到 ,获得积分10
26秒前
luluyang完成签到 ,获得积分10
26秒前
阳光的幻雪完成签到 ,获得积分10
27秒前
云漫山发布了新的文献求助10
28秒前
新新新新新发顶刊完成签到 ,获得积分10
30秒前
2316690509完成签到 ,获得积分10
34秒前
moonlimb完成签到 ,获得积分10
35秒前
Min发布了新的文献求助10
36秒前
小石榴爸爸完成签到 ,获得积分10
40秒前
积极从蕾应助英俊溪灵采纳,获得10
41秒前
爆米花应助六合汤某人采纳,获得10
44秒前
彭洪凯完成签到,获得积分10
49秒前
执着乐双完成签到,获得积分10
51秒前
LINDENG2004完成签到 ,获得积分10
52秒前
白日焰火完成签到 ,获得积分10
57秒前
上官若男应助云漫山采纳,获得10
1分钟前
科目三应助答题不卡采纳,获得10
1分钟前
典雅的纸飞机完成签到 ,获得积分10
1分钟前
sunflower完成签到,获得积分0
1分钟前
想上985完成签到,获得积分10
1分钟前
jctyp完成签到,获得积分10
1分钟前
dejiangcj完成签到 ,获得积分10
1分钟前
1分钟前
云漫山完成签到 ,获得积分10
1分钟前
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
答题不卡发布了新的文献求助10
1分钟前
积极从蕾应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131361
求助须知:如何正确求助?哪些是违规求助? 3668151
关于积分的说明 11601103
捐赠科研通 3365680
什么是DOI,文献DOI怎么找? 1849162
邀请新用户注册赠送积分活动 912898
科研通“疑难数据库(出版商)”最低求助积分说明 828355