放射性密度
皮质骨
化学
膜
矿化(土壤科学)
X射线显微断层摄影术
钙
解剖
牙科
生物医学工程
射线照相术
医学
外科
生物化学
放射科
有机化学
氮气
作者
José Luís Calvo‐Guirado,Maria Piedad Ramírez Fernández,José Eduardo Maté Sánchez de Val,Bruno Negrí,Pablo Velásquez,Piedad N. De Aza
摘要
Abstract Objectives 4Bone is a fully synthetic bioactive bone substitute composed of 60% hydroxyapatite ( HA ) and 40% beta‐tricalcium phosphate (ß‐ TCP ). This study aimed to investigate the effect of resorbable collagen membranes ( RCM ) on critical size defects in rabbit tibiae filled with this novel biphasic calcium phosphate at 15, 30, 45, and 60 days by radiological and histomorphometric analysis. Material and methods Three critical size defects of 6 mm diameter were created in both tibiae of 20 New Zealand rabbits and divided into three groups according to the filling material: Group A (4Bone), Group B (4Bone plus RCM ), and Group C (unfilled control group). At each of the four study periods, five rabbits were sacrificed. Anteroposterior and lateral radiographs were taken. Samples were processed for observation under light microscopy. Results At the end of treatment, radiological analysis found that cortical defect closure was greater in Group B than Group A, and radiopacity was clearly lower and more heterogeneous in Group A cortical defects than in Group B. There was no cortical defect closure in Group C. Histomorphometric evaluation showed significant differences in newly formed bone and cortical closure in Group B compared with Groups A and C, with the presence of higher density newly formed bone in cortical and medullar zones. Conclusions Biphasic calcium phosphate functioned well as a scaffolding material allowing bone ingrowth and mineralization. The addition of absorbable collagen membranes enhanced bone gain compared with non‐membrane‐treated sites. This rabbit study provides radiological and histological evidence confirming the suitability of this new material for guided tissue regeneration of critical defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI