Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.

药物发现 虚拟筛选 计算生物学 药品 信息学 生物信息学 药物设计 鉴定(生物学) 计算机科学 抗癌药 数据科学 生物信息学 生物 药理学 基因 工程类 遗传学 植物 电气工程
作者
George D. Geromichalos,Constantinos Alifieris,Elena Geromichalou,Dimitrios T. Trafalis
出处
期刊:PubMed 卷期号:21 (4): 764-779 被引量:29
链接
标识
摘要

Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Nowadays, new generation of anti- cancer drugs, able to inhibit more than one pathway, is believed to play a major role in contemporary anticancer drug research. In this way, polypharmacology, focusing on multi-target drugs, has emerged as a new paradigm in drug discovery. A number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes. Increasing insight into the genetics and molecular biology of cancer has resulted in the identification of an increasing number of potential molecular targets, for anticancer drug discovery and development. These targets can be approached through exploitation of emerging structural biology, "rational" drug design, screening of chemical libraries, or a combination of these methods. The result is the rapid discovery of new anticancer drugs. In this article we discuss the application of molecular modeling, molecular docking and virtual high-throughput screening to multi-targeted anticancer drug discovery. Efforts have been made to employ in silico methods for facilitating the search and design of selective multi-target agents. These computer aided molecular design methods have shown promising potential in facilitating drug discovery directed at selective multiple targets and is expected to contribute to intelligent lead anticancer drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助FXe采纳,获得10
1秒前
铭铭完成签到 ,获得积分10
1秒前
戏子发布了新的文献求助10
1秒前
科研小白完成签到,获得积分10
2秒前
映城完成签到,获得积分0
2秒前
科研通AI2S应助KD357采纳,获得10
3秒前
3秒前
ff发布了新的文献求助10
4秒前
5秒前
nieyaochi发布了新的文献求助10
5秒前
YY完成签到,获得积分10
5秒前
5秒前
7秒前
风清扬发布了新的文献求助10
7秒前
Hello应助上官尔芙采纳,获得10
7秒前
梅子酒发布了新的文献求助10
8秒前
FoxLY完成签到,获得积分10
10秒前
超帅依丝关注了科研通微信公众号
11秒前
12秒前
David发布了新的文献求助10
12秒前
奋斗秋尽发布了新的文献求助10
12秒前
香蕉觅云应助瘦瘦幻天采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
mxx完成签到,获得积分10
16秒前
16秒前
18秒前
奋斗秋尽完成签到,获得积分10
19秒前
20秒前
万能图书馆应助科研小白采纳,获得10
21秒前
吉吉完成签到,获得积分10
22秒前
李爱国应助快乐友灵采纳,获得10
22秒前
22秒前
22秒前
23秒前
77发布了新的文献求助10
23秒前
24秒前
25秒前
上官若男应助Choi采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480392
求助须知:如何正确求助?哪些是违规求助? 4581543
关于积分的说明 14381096
捐赠科研通 4510088
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458070
关于科研通互助平台的介绍 1431812