血管生成
新生血管
基质凝胶
炎症
骨髓
免疫系统
生物
血管内皮生长因子
受体
癌症研究
化学
细胞生物学
免疫学
医学
内科学
血管内皮生长因子受体
作者
Farah Kako,Khatuna Gabunia,Mitali Ray,Sheri Kelemen,Ross N. England,Bashar Kako,Rosario Scalia,Michael V. Autieri
出处
期刊:American Journal of Physiology-cell Physiology
[American Physical Society]
日期:2016-04-07
卷期号:310 (11): C931-C941
被引量:32
标识
DOI:10.1152/ajpcell.00006.2016
摘要
Neovascularization and inflammation are independent biological processes but are linked in response to injury. The role of inflammation-dampening cytokines in the regulation of angiogenesis remains to be clarified. The purpose of this work was to test the hypothesis that IL-19 can induce angiogenesis in the absence of tissue hypoxia and to identify potential mechanisms. Using the aortic ring model of angiogenesis, we found significantly reduced sprouting capacity in aortic rings from IL-19(-/-) compared with wild-type mice. Using an in vivo assay, we found that IL-19(-/-) mice respond to vascular endothelial growth factor (VEGF) significantly less than wild-type mice and demonstrate decreased capillary formation in Matrigel plugs. IL-19 signals through the IL-20 receptor complex, and IL-19 induces IL-20 receptor subunit expression in aortic rings and cultured human vascular smooth muscle cells, but not endothelial cells, in a peroxisome proliferator-activated receptor-γ-dependent mechanism. IL-19 activates STAT3, and IL-19 angiogenic activity in aortic rings is STAT3-dependent. Using a quantitative RT-PCR screening assay, we determined that IL-19 has direct proangiogenic effects on aortic rings by inducing angiogenic gene expression. M2 macrophages participate in angiogenesis, and IL-19 has indirect angiogenic effects, as IL-19-stimulated bone marrow-derived macrophages secrete proangiogenic factors that induce greater sprouting of aortic rings than unstimulated controls. Using a quantitative RT-PCR screen, we determined that IL-19 induces expression of angiogenic cytokines in bone marrow-derived macrophages. Together, these data suggest that IL-19 can promote angiogenesis in the absence of hypoxia by at least two distinct mechanisms: 1) direct effects on vascular cells and 2) indirect effects by stimulation of macrophages.
科研通智能强力驱动
Strongly Powered by AbleSci AI