Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network

自编码 人工智能 机器学习 计算机科学 人工神经网络 细胞色素P450 深度学习 化学 计算生物学 生物 生物化学
作者
Xiang Li,Youjun Xu,Luhua Lai,Jianfeng Pei
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:15 (10): 4336-4345 被引量:111
标识
DOI:10.1021/acs.molpharmaceut.8b00110
摘要

Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP450) inhibition is an important consideration in drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP450 isoform. In this study, we developed a multitask model for concurrent inhibition prediction of five major CYP450 isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 3A4. The model was built by training a multitask autoencoder deep neural network (DNN) on a large dataset containing more than 13 000 compounds, extracted from the PubChem BioAssay Database. We demonstrate that the multitask model gave better prediction results than that of single-task models, previous reported classifiers, and traditional machine learning methods on an average of five prediction tasks. Our multitask DNN model gave average prediction accuracies of 86.4% for the 10-fold cross-validation and 88.7% for the external test datasets. In addition, we built linear regression models to quantify how the other tasks contributed to the prediction difference of a given task between single-task and multitask models, and we explained under what conditions the multitask model will outperform the single-task model, which suggested how to use multitask DNN models more effectively. We applied sensitivity analysis to extract useful knowledge about CYP450 inhibition, which may shed light on the structural features of these isoforms and give hints about how to avoid side effects during drug development. Our models are freely available at http://repharma.pku.edu.cn/deepcyp/home.php or http://www.pkumdl.cn/deepcyp/home.php .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
fugui发布了新的文献求助10
刚刚
无忧完成签到,获得积分20
刚刚
夏来应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
暮霭沉沉应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
阳光棉花糖完成签到,获得积分10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
yznfly应助科研通管家采纳,获得30
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
葡萄酒完成签到,获得积分10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
ann应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
yznfly应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
伶俐从筠发布了新的文献求助10
2秒前
3秒前
非洲大象发布了新的文献求助250
3秒前
化学y完成签到,获得积分10
3秒前
可耐的书竹关注了科研通微信公众号
4秒前
快乐的井完成签到,获得积分20
4秒前
fqf发布了新的文献求助10
5秒前
wu完成签到,获得积分10
5秒前
孤独的猕猴桃完成签到,获得积分10
5秒前
香蕉醉波完成签到 ,获得积分10
6秒前
lvbowen完成签到,获得积分10
6秒前
123完成签到,获得积分20
7秒前
sheep发布了新的文献求助10
8秒前
小蘑菇应助爱撒娇的曼凝采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Revolution in China and Russia: Reorganizing empires into nation states 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932694
求助须知:如何正确求助?哪些是违规求助? 3477663
关于积分的说明 10998236
捐赠科研通 3207993
什么是DOI,文献DOI怎么找? 1772620
邀请新用户注册赠送积分活动 859907
科研通“疑难数据库(出版商)”最低求助积分说明 797378