CT-realistic data augmentation using generative adversarial network for robust lymph node segmentation

计算机科学 节点(物理) 分割 淋巴结 人工智能 图像分割 任务(项目管理) 医学影像学 模式识别(心理学) 计算机视觉 医学 病理 管理 经济 结构工程 工程类
作者
Youbao Tang,Soo-Youn Oh,Yuxing Tang,Jing Xiao,Ronald M. Summers
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 被引量:35
标识
DOI:10.1117/12.2512004
摘要

As an important task in medical imaging analysis, automatic lymph node segmentation from computed tomography (CT) scans has been studied well in recent years, but it is still very challenging due to the lack of adequately-labeled training data. Manually annotating a large number of lymph node segmentations is expensive and time-consuming. For this reason, data augmentation can be considered as a surrogate of enriching the data. However, most of the traditional augmentation methods use a combination of affine transformations to manipulate the data, which cannot increase the diversity of the data’s contextual information. To mitigate this problem, this paper proposes a data augmentation approach based on generative adversarial network (GAN) to synthesize a large number of CT-realistic images from customized lymph node masks. In this work, the pix2pix GAN model is used due to its strength for image generation, which can learn the structural and contextual information of lymph nodes and their surrounding tissues from CT scans. With these additional augmented images, a robust U-Net model is learned for lymph node segmentation. Experimental results on NIH lymph node dataset demonstrate that the proposed data augmentation approach can produce realistic CT images and the lymph node segmentation performance is improved effectively using the additional augmented data, e.g. the Dice score increased about 2.2% (from 80.3% to 82.5%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜玫瑰应助科研通管家采纳,获得10
3秒前
ZhouYW应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
爆米花应助小星星采纳,获得10
7秒前
7秒前
7秒前
8秒前
思源应助ZZY采纳,获得10
9秒前
9秒前
醋溜荧光大蒜完成签到 ,获得积分10
10秒前
xxxten完成签到,获得积分10
11秒前
林伟江发布了新的文献求助10
12秒前
酷波er应助旺仔采纳,获得10
12秒前
an上人完成签到,获得积分10
13秒前
wentao发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
虚拟的蛋挞完成签到,获得积分20
19秒前
19秒前
共享精神应助伯劳采纳,获得10
19秒前
Rainor发布了新的文献求助10
19秒前
20秒前
人生苦短完成签到,获得积分10
20秒前
开心的大开完成签到 ,获得积分10
20秒前
ZZY发布了新的文献求助10
21秒前
M1完成签到,获得积分10
22秒前
林伟江完成签到,获得积分10
22秒前
追寻书雁完成签到 ,获得积分10
22秒前
直率沂发布了新的文献求助10
23秒前
24秒前
橘子味汽水完成签到 ,获得积分10
24秒前
小白发布了新的文献求助10
25秒前
松鼠15111完成签到,获得积分10
27秒前
快帮我找找完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814371
求助须知:如何正确求助?哪些是违规求助? 3358476
关于积分的说明 10395223
捐赠科研通 3075736
什么是DOI,文献DOI怎么找? 1689502
邀请新用户注册赠送积分活动 812992
科研通“疑难数据库(出版商)”最低求助积分说明 767428