Nanosheet-assembled hierarchical Li4Ti5O12 microspheres for high-volumetric-density and high-rate Li-ion battery anode

材料科学 纳米片 阳极 电池(电) 化学工程 纳米技术 锂离子电池 电化学 离子 电极 物理化学 量子力学 物理 工程类 功率(物理) 化学
作者
Dongdong Wang,Haodong Liu,Mingqian Li,Xuefeng Wang,Shuang Bai,Yang Shi,Jianhua Tian,Zhongqiang Shan,Ying Shirley Meng,Ping Liu,Zheng Chen
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:21: 361-371 被引量:59
标识
DOI:10.1016/j.ensm.2019.05.036
摘要

Fast-charging (high-rate) is a critical need for lithium-ion batteries (LIBs). While superior rate performance can be achieved by nanostructured electrodes, their tap density is often low, which leads to low volumetric energy density and limits their practical applications. Here, we report nanosheet-assembled Li4Ti5O12 (LTO) hierarchical microspheres which can simultaneously achieve high tap density, high rate performance and long cycle life. These microspheres were prepared with high yield by facile solvothermal reaction followed by a short thermal annealing process. The formation mechanism of such LTO microspheres was systematically investigated to understand their morphology evolution and phase transformation process. These well-designed hierarchical microspheres with controlled features on both nanometer- and micrometer-scales enable dense particle packing, easy lithium-ion diffusion and high structure robustness. Optimal LTO microspheres can offer extremely high rate capability (e.g., 155 mAh g−1 at 50 C), and excellent cycling stability (99.5% capacity retention after 2000 cycles at 50 C, 95.4% capacity retention after 3000 cycles at 30 C) with a tap density of 1.32 g cm−3. Furthermore, their superior performance was also demonstrated with LiNi0.5Mn1.5O4 cathode in full cells, which showed 93.4% of capacity retention after 1000 cycles at 3C. These results suggest the great promise of using such high-volumetric-density LTO as an anode material for high-rate and long-life LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心青旋完成签到,获得积分10
1秒前
3秒前
领导范儿应助夏傥采纳,获得10
6秒前
8秒前
fengliurencai完成签到,获得积分20
11秒前
13秒前
吴先生完成签到 ,获得积分10
13秒前
帽帽发布了新的文献求助10
15秒前
夏傥发布了新的文献求助10
17秒前
水若琳完成签到,获得积分10
19秒前
科研小民工完成签到,获得积分10
20秒前
cctv18应助fengliurencai采纳,获得30
20秒前
kkfly完成签到,获得积分10
25秒前
Akim应助zoe采纳,获得10
27秒前
VTM完成签到,获得积分10
28秒前
CipherSage应助孝顺的雁芙采纳,获得10
34秒前
36秒前
完美世界应助Haisi采纳,获得10
37秒前
cyh413134发布了新的文献求助10
38秒前
斯文败类应助科研通管家采纳,获得10
39秒前
桐桐应助科研通管家采纳,获得10
39秒前
JamesPei应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
小尹同学应助科研通管家采纳,获得30
39秒前
ding应助科研通管家采纳,获得10
39秒前
jiujiuwo发布了新的文献求助10
40秒前
一苇完成签到,获得积分10
41秒前
小墨墨完成签到 ,获得积分10
41秒前
43秒前
一苇发布了新的文献求助10
47秒前
wdmxsmebdx完成签到,获得积分10
51秒前
uikymh完成签到 ,获得积分0
56秒前
烟花应助一苇采纳,获得30
57秒前
ColinWine完成签到,获得积分10
58秒前
杨杨完成签到,获得积分10
1分钟前
来碗孟婆汤完成签到,获得积分10
1分钟前
1分钟前
ACESSt发布了新的文献求助20
1分钟前
1分钟前
1分钟前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2547412
求助须知:如何正确求助?哪些是违规求助? 2176233
关于积分的说明 5603131
捐赠科研通 1897016
什么是DOI,文献DOI怎么找? 946498
版权声明 565383
科研通“疑难数据库(出版商)”最低求助积分说明 503772