计算机科学
人工智能
合成孔径雷达
卷积神经网络
稳健性(进化)
模式识别(心理学)
变更检测
预处理器
雷达成像
聚类分析
深度学习
目标检测
特征提取
计算机视觉
雷达
基因
电信
生物化学
化学
作者
Yangyang Li,Peng Cheng,Yanqiao Chen,Licheng Jiao,Linhao Zhou,Ronghua Shang
标识
DOI:10.1109/tgrs.2019.2901945
摘要
With the rapid development of various technologies of satellite sensor, synthetic aperture radar (SAR) image has been an import source of data in the application of change detection. In this paper, a novel method based on a convolutional neural network (CNN) for SAR image change detection is proposed. The main idea of our method is to generate the classification results directly from the original two SAR images through a CNN without any preprocessing operations, which also eliminate the process of generating the difference image (DI), thus reducing the influence of the DI on the final classification result. In CNN, the spatial characteristics of the raw image can be extracted and captured by automatic learning and the results with stronger robustness can be obtained. The basic idea of the proposed method includes three steps: it first produces false labels through unsupervised spatial fuzzy clustering. Then we train the CNN through proper samples that are selected from the samples with false labels. Finally, the final detection results are obtained by the trained convolutional network. Although training the convolutional network is a supervised learning fashion, the whole process of the algorithm is an unsupervised process without priori knowledge. The theoretical analysis and experimental results demonstrate the validity, robustness, and potential of our algorithm in simulated and real data sets. In addition, we try to apply our algorithm to the change detection of heterogeneous images, which also achieves satisfactory results.
科研通智能强力驱动
Strongly Powered by AbleSci AI