Deep Learning-Aided Optical IM/DD OFDM Approaches the Throughput of RF-OFDM

正交频分复用 计算机科学 发射机 自编码 厄米函数 电子工程 频域 误码率 光谱效率 加性高斯白噪声 吞吐量 信噪比(成像) 算法 深度学习 解码方法 频道(广播) 电信 无线 人工智能 数学 厄米矩阵 工程类 计算机视觉 纯数学
作者
Thien Van Luong,Xiaoyu Zhang,Luping Xiang,Tiep M. Hoang,Chao Xu,Periklis Petropoulos,Lajos Hanzo
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 212-226 被引量:16
标识
DOI:10.1109/jsac.2021.3126080
摘要

Deep learning-aided optical orthogonal frequency division multiplexing (O-OFDM) is proposed for intensity modulated direct detection transmissions, which is termed as O-OFDMNet. In particular, O-OFDMNet employs deep neural networks (DNNs) for converting a complex-valued signal into a non-negative signal in the time-domain at the transmitter and vice versa at the receiver. The associated frequency-domain signal processing remains the same as in conventional radio frequency (RF) OFDM. As a result, our scheme achieves the same spectral efficiency as the RF scheme, which has never been attained by the existing O-OFDM schemes, because they have relied on the Hermitian symmetry of the spectral-domain signal to guarantee that the time-domain signal becomes real-valued. We show that O-OFDMNet can be viewed as an autoencoder architecture, which can be trained in an end-to-end manner in order to simultaneously improve both the bit error ratio (BER) and the peak-to-average power ratio (PAPR) for transmission over both additive white Gaussian noise and frequency-selective channels. Furthermore, we intrinsically integrate a soft-decision aided channel decoder with our O-OFDMNet and investigate its coded performance relying on both convolutional and polar codes. The simulation results show that our scheme improves both the uncoded and coded BER as well as a reducing the PAPR compared to the benchmarks at the cost of a moderate additional DNN complexity. Furthermore, our scheme is capable of approaching the throughput of RF-OFDM, which is notably higher than that of conventional O-OFDM. Finally, our complexity analysis shows that O-OFDMNet is suitable for real-time operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一休发布了新的文献求助10
刚刚
石头完成签到 ,获得积分10
刚刚
1秒前
簌落发布了新的文献求助10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
plaaf发布了新的文献求助10
3秒前
小贱牛完成签到,获得积分10
3秒前
英俊的铭应助1111采纳,获得10
4秒前
march完成签到,获得积分10
5秒前
ML应助延胡索采纳,获得10
5秒前
科目三应助7275XXX采纳,获得10
8秒前
9秒前
10秒前
ding完成签到,获得积分10
10秒前
景易完成签到,获得积分10
10秒前
我是老大应助青云采纳,获得10
11秒前
11秒前
11秒前
小二郎应助李涵睿采纳,获得10
11秒前
14秒前
14秒前
14秒前
伶俐白凝发布了新的文献求助10
15秒前
ljr完成签到 ,获得积分20
15秒前
陈郭安生发布了新的文献求助10
15秒前
1111发布了新的文献求助10
16秒前
11224455发布了新的文献求助10
16秒前
赘婿应助现代的擎苍采纳,获得10
17秒前
18秒前
杨19980625发布了新的文献求助10
18秒前
小贱牛发布了新的文献求助10
19秒前
19秒前
21秒前
niki完成签到,获得积分10
21秒前
邓佳鑫Alan应助洁净的元蝶采纳,获得10
22秒前
慕青应助可爱邓邓采纳,获得10
23秒前
24秒前
qqqqqq发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541912
求助须知:如何正确求助?哪些是违规求助? 4628170
关于积分的说明 14607515
捐赠科研通 4569328
什么是DOI,文献DOI怎么找? 2505141
邀请新用户注册赠送积分活动 1482564
关于科研通互助平台的介绍 1454064