Deep Learning-Aided Optical IM/DD OFDM Approaches the Throughput of RF-OFDM

正交频分复用 计算机科学 发射机 自编码 厄米函数 电子工程 频域 误码率 光谱效率 加性高斯白噪声 吞吐量 信噪比(成像) 算法 深度学习 解码方法 频道(广播) 电信 无线 人工智能 数学 厄米矩阵 工程类 计算机视觉 纯数学
作者
Thien Van Luong,Xiaoyu Zhang,Luping Xiang,Tiep M. Hoang,Chao Xu,Periklis Petropoulos,Lajos Hanzo
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 212-226 被引量:16
标识
DOI:10.1109/jsac.2021.3126080
摘要

Deep learning-aided optical orthogonal frequency division multiplexing (O-OFDM) is proposed for intensity modulated direct detection transmissions, which is termed as O-OFDMNet. In particular, O-OFDMNet employs deep neural networks (DNNs) for converting a complex-valued signal into a non-negative signal in the time-domain at the transmitter and vice versa at the receiver. The associated frequency-domain signal processing remains the same as in conventional radio frequency (RF) OFDM. As a result, our scheme achieves the same spectral efficiency as the RF scheme, which has never been attained by the existing O-OFDM schemes, because they have relied on the Hermitian symmetry of the spectral-domain signal to guarantee that the time-domain signal becomes real-valued. We show that O-OFDMNet can be viewed as an autoencoder architecture, which can be trained in an end-to-end manner in order to simultaneously improve both the bit error ratio (BER) and the peak-to-average power ratio (PAPR) for transmission over both additive white Gaussian noise and frequency-selective channels. Furthermore, we intrinsically integrate a soft-decision aided channel decoder with our O-OFDMNet and investigate its coded performance relying on both convolutional and polar codes. The simulation results show that our scheme improves both the uncoded and coded BER as well as a reducing the PAPR compared to the benchmarks at the cost of a moderate additional DNN complexity. Furthermore, our scheme is capable of approaching the throughput of RF-OFDM, which is notably higher than that of conventional O-OFDM. Finally, our complexity analysis shows that O-OFDMNet is suitable for real-time operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hy1234发布了新的文献求助10
刚刚
orixero应助huangmubao采纳,获得20
1秒前
水水的完成签到 ,获得积分10
1秒前
星河发布了新的文献求助10
2秒前
研友_V8RmmZ发布了新的文献求助10
2秒前
2秒前
清爽慕山完成签到 ,获得积分10
3秒前
大模型应助ziyue采纳,获得10
3秒前
3秒前
5秒前
5秒前
英姑应助Hy7493采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
子车茗应助haha采纳,获得30
11秒前
Yy完成签到,获得积分10
11秒前
CipherSage应助星河采纳,获得10
11秒前
12秒前
美好水池发布了新的文献求助50
13秒前
14秒前
Owen应助123采纳,获得10
15秒前
乂领域发布了新的文献求助10
15秒前
禤X完成签到,获得积分10
15秒前
17秒前
科研通AI6应助垃圾智造者采纳,获得10
17秒前
帅气蓝发布了新的文献求助10
18秒前
调皮的醉山完成签到,获得积分10
18秒前
充电宝应助清爽的碧空采纳,获得10
19秒前
20秒前
赵世璧完成签到,获得积分10
21秒前
blablawindy发布了新的文献求助10
21秒前
航佐完成签到,获得积分10
21秒前
22秒前
23秒前
科研通AI5应助任成艳采纳,获得10
23秒前
航佐发布了新的文献求助10
25秒前
广东最奶的龙完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4691191
求助须知:如何正确求助?哪些是违规求助? 4062810
关于积分的说明 12562249
捐赠科研通 3760697
什么是DOI,文献DOI怎么找? 2077054
邀请新用户注册赠送积分活动 1105705
科研通“疑难数据库(出版商)”最低求助积分说明 984306