已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spray Cooling on Enhanced Surfaces: A Review of the Progress and Mechanisms

传热 冷却液 临界热流密度 材料科学 热流密度 机械工程 主动冷却 水冷 强化传热 被动冷却 内燃机冷却 高温 散热片 数码产品 强化传热 计算机冷却 核工程 传热系数 机械 工程类 电气工程 复合材料 电子设备和系统的热管理 燃烧 化学 物理 燃烧室 有机化学
作者
Ruina Xu,Gaoyuan Wang,Peixue Jiang
出处
期刊:Journal of Electronic Packaging [ASM International]
卷期号:144 (1) 被引量:118
标识
DOI:10.1115/1.4050046
摘要

Abstract The rapid development of high-power electronic, energy, and propulsion systems has led us to the point where the performances of these systems are limited by their cooling capacities. Current electronics can generate heat fluxes up to 10–100 W/cm2, and heat flux over 1000 W/cm2 needs to be dissipated with a minimum coolant flow rate in next-generation power electronics. The multiple efficient heat transfer mechanisms have made spray cooling a high heat flux, uniform and efficient cooling technique proven effective in various applications. However, the cooling capacity and efficiency of spray cooling need to be further improved to meet the demands of next-generation ultrahigh-power applications. Engineering of surface properties and structures, which is enabled by state-of-the-art manufacturing techniques, can fundamentally affect the liquid–wall interactions in spray cooling, thus becoming the most promising way to enhance spray cooling. However, the mechanisms of surface-enhanced spray cooling are diverse and ambiguous, causing a lack of clear guiding principles for engineered surface design. Here, the progress in surface engineering-enhanced spray cooling is reviewed for surface structures of millimeter, micrometer, and nanometer scales and hierarchical structured surfaces, and the performances from the reviewed literature are evaluated and compared. The reviewed data show that spray cooling can achieve a critical heat flux (CHF) above 945.7 W/cm2 and a heat transfer coefficient (HTC) up to 57 W/cm2K on structured surfaces without the assistance of secondary gas flow and a CHF and an HTC up to 1250.1 W/cm2 and 250 W/cm2K, respectively, on a smooth surface with the assistance of secondary gas flow. A CHF enhancement up to 110% was achieved on a hybrid micro- and nanostructured surface. A clear map of enhancement mechanisms related to the scales of surface structures is proposed, which can help the design of engineered surfaces in spray cooling. Some future concerns are proposed as well. This work helps the understanding and design of engineered surfaces in spray cooling and provides insights for interdisciplinary applications of heat transfer and advanced engineering materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meteor636完成签到 ,获得积分10
1秒前
共享精神应助bichengbo采纳,获得10
1秒前
2秒前
3秒前
4秒前
5秒前
窗外落霞完成签到,获得积分10
5秒前
6秒前
7秒前
易落发布了新的文献求助10
8秒前
无花果应助朱先生采纳,获得10
11秒前
鸣笛应助金启维采纳,获得20
11秒前
12秒前
MiSD完成签到,获得积分10
12秒前
12秒前
13秒前
研友_ZlPNaZ发布了新的文献求助10
13秒前
14秒前
传奇3应助熊猫采纳,获得10
14秒前
李爱国应助风不定采纳,获得20
17秒前
刘先生完成签到,获得积分10
18秒前
ChungZ发布了新的文献求助10
18秒前
深情安青应助罗龙生采纳,获得10
18秒前
21秒前
酷炫的幻丝完成签到 ,获得积分10
21秒前
23秒前
梅惜梦应助Coral369采纳,获得10
24秒前
25秒前
阿俊1212完成签到,获得积分10
26秒前
小情绪完成签到 ,获得积分10
30秒前
30秒前
罗龙生发布了新的文献求助10
32秒前
高大的稀完成签到,获得积分10
32秒前
yangqi完成签到,获得积分10
32秒前
橙子呀~完成签到 ,获得积分10
34秒前
35秒前
佳佳完成签到,获得积分10
35秒前
初雪完成签到,获得积分10
35秒前
橙子皮发布了新的文献求助10
36秒前
lalala发布了新的文献求助10
37秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Finite Groups: An Introduction 800
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910225
求助须知:如何正确求助?哪些是违规求助? 3455855
关于积分的说明 10885823
捐赠科研通 3181834
什么是DOI,文献DOI怎么找? 1758252
邀请新用户注册赠送积分活动 850720
科研通“疑难数据库(出版商)”最低求助积分说明 792176