Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models: Increasing the Predictability of Poor Metabolism in Humans

排泄 泌尿系统 尿 动物研究 药代动力学 动物种类 药品 人类动物 动物模型 生理学 内分泌学 内科学 化学 医学 药理学 生物 牲畜 动物 生态学
作者
Nadia O. Bamfo,Chelsea M. Hosey,L Z Benet,Connie M. Remsberg
出处
期刊:Pharmaceutical Research [Springer Science+Business Media]
卷期号:38 (7): 1139-1156 被引量:5
标识
DOI:10.1007/s11095-021-03076-y
摘要

A dataset of fraction excreted unchanged in the urine (fe) values was developed and used to evaluate the ability of preclinical animal species to predict high urinary excretion, and corresponding poor metabolism, in humans.A literature review of fe values in rats, dogs, and monkeys was conducted for all Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3 and 4 drugs (n=352) and a set of Class 1 and 2 drugs (n=80). The final dataset consisted of 202 total fe values for 135 unique drugs. Human and animal data were compared through correlations, two-fold analysis, and binary classifications of high (fe ≥30%) versus low (<30%) urinary excretion in humans. Receiver Operating Characteristic curves were plotted to optimize animal fe thresholds.Significant correlations were found between fe values for each animal species and human fe (p<0.05). Sixty-five percent of all fe values were within two-fold of human fe with animals more likely to underpredict human urinary excretion as opposed to overpredict. Dogs were the most reliable predictors of human fe of the three animal species examined with 72% of fe values within two-fold of human fe and the greatest accuracy in predicting human fe ≥30%. ROC determined thresholds of ≥25% in rats, ≥19% in dogs, and ≥10% in monkeys had improved accuracies in predicting human fe of ≥30%.Drugs with high urinary excretion in animals are likely to have high urinary excretion in humans. Animal models tend to underpredict the urinary excretion of unchanged drug in humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moi发布了新的文献求助10
1秒前
卡卡西完成签到,获得积分10
1秒前
WHB完成签到,获得积分10
1秒前
浮生发布了新的文献求助10
5秒前
思源应助YangYu采纳,获得10
5秒前
JamesPei应助YeHan采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
小葱头应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小葱头应助科研通管家采纳,获得10
6秒前
8秒前
善学以致用应助少年愁采纳,获得10
8秒前
思源应助御风采纳,获得10
9秒前
无限的山水完成签到 ,获得积分10
10秒前
smalldragon发布了新的文献求助10
11秒前
共享精神应助鲤鱼平安采纳,获得10
12秒前
田様应助有Data发Paper采纳,获得10
12秒前
小明同学完成签到,获得积分10
13秒前
小二郎应助王姝文采纳,获得10
14秒前
万能图书馆应助王姝文采纳,获得10
14秒前
CodeCraft应助王姝文采纳,获得10
14秒前
14秒前
16秒前
辣辣发布了新的文献求助10
16秒前
16秒前
17秒前
天天快乐应助Ran采纳,获得10
17秒前
秋实完成签到,获得积分10
17秒前
彭于晏应助朴实的十八采纳,获得10
18秒前
YeHan发布了新的文献求助10
20秒前
21秒前
21秒前
小不正经发布了新的文献求助10
21秒前
少年愁发布了新的文献求助10
22秒前
所所应助王姝文采纳,获得10
22秒前
大模型应助王姝文采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4811425
求助须知:如何正确求助?哪些是违规求助? 4124542
关于积分的说明 12762288
捐赠科研通 3861107
什么是DOI,文献DOI怎么找? 2125345
邀请新用户注册赠送积分活动 1146990
关于科研通互助平台的介绍 1040525