光子晶体
结构着色
光子学
胶体晶体
光子超材料
模板
材料科学
彩虹色
光电子学
反射(计算机编程)
亚布朗维特
纳米技术
光学
物理
胶体
计算机科学
光子集成电路
化学
物理化学
程序设计语言
作者
Rose K. Cersonsky,James Antonaglia,Bradley Dice,Sharon C. Glotzer
标识
DOI:10.1038/s41467-021-22809-6
摘要
Abstract Many butterflies, birds, beetles, and chameleons owe their spectacular colors to the microscopic patterns within their wings, feathers, or skin. When these patterns, or photonic crystals, result in the omnidirectional reflection of commensurate wavelengths of light, it is due to a complete photonic band gap (PBG). The number of natural crystal structures known to have a PBG is relatively small, and those within the even smaller subset of notoriety, including diamond and inverse opal, have proven difficult to synthesize. Here, we report more than 150,000 photonic band calculations for thousands of natural crystal templates from which we predict 351 photonic crystal templates – including nearly 300 previously-unreported structures – that can potentially be realized for a multitude of applications and length scales, including several in the visible range via colloidal self-assembly. With this large variety of 3D photonic crystals, we also revisit and discuss oft-used primary design heuristics for PBG materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI