A generalizable speech emotion recognition model reveals depression and remission

心理学 萧条(经济学) 情绪识别 心理治疗师 临床心理学 听力学 认知心理学 医学 神经科学 经济 宏观经济学
作者
Lasse Hansen,Yanping Zhang,Detlef Wolf,Konstantinos Sechidis,Nicolai Ladegaard,Riccardo Fusaroli
出处
期刊:Acta Psychiatrica Scandinavica [Wiley]
卷期号:145 (2): 186-199 被引量:33
标识
DOI:10.1111/acps.13388
摘要

OBJECTIVE: Affective disorders are associated with atypical voice patterns; however, automated voice analyses suffer from small sample sizes and untested generalizability on external data. We investigated a generalizable approach to aid clinical evaluation of depression and remission from voice using transfer learning: we train machine learning models on easily accessible non-clinical datasets and test them on novel clinical data in a different language. METHODS: A Mixture-of-Experts machine learning model was trained to infer happy/sad emotional state using three publicly available emotional speech corpora in German and US English. We examined the model's predictive ability to classify the presence of depression on Danish speaking healthy controls (N = 42), patients with first-episode major depressive disorder (MDD) (N = 40), and the subset of the same patients who entered remission (N = 25) based on recorded clinical interviews. The model was evaluated on raw, de-noised, and speaker-diarized data. RESULTS: The model showed separation between healthy controls and depressed patients at the first visit, obtaining an AUC of 0.71. Further, speech from patients in remission was indistinguishable from that of the control group. Model predictions were stable throughout the interview, suggesting that 20-30 seconds of speech might be enough to accurately screen a patient. Background noise (but not speaker diarization) heavily impacted predictions. CONCLUSION: A generalizable speech emotion recognition model can effectively reveal changes in speaker depressive states before and after remission in patients with MDD. Data collection settings and data cleaning are crucial when considering automated voice analysis for clinical purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞雨南完成签到,获得积分10
刚刚
Zoo应助Rockyhee22采纳,获得30
1秒前
包元霜发布了新的文献求助30
2秒前
zuo发布了新的文献求助10
2秒前
Xerxez完成签到,获得积分10
4秒前
4秒前
JUST完成签到,获得积分10
5秒前
5秒前
黄俊发布了新的文献求助10
5秒前
5秒前
5秒前
周小鱼完成签到,获得积分10
6秒前
7秒前
李爱国应助Xerxez采纳,获得10
10秒前
10秒前
豆浆来点蒜泥完成签到,获得积分10
10秒前
甜甜凡蕾完成签到,获得积分10
11秒前
蔡蔡发布了新的文献求助10
11秒前
12秒前
wy.he应助lkk采纳,获得10
12秒前
13秒前
甜甜凡蕾发布了新的文献求助10
14秒前
假唱卡带完成签到,获得积分10
15秒前
Eleanor发布了新的文献求助10
15秒前
大模型应助wg采纳,获得10
15秒前
18秒前
chenzhuod完成签到,获得积分10
19秒前
小狗完成签到 ,获得积分10
20秒前
20秒前
万能图书馆应助Eleanor采纳,获得10
22秒前
23秒前
lijinquan1988发布了新的文献求助10
23秒前
呆萌采白发布了新的文献求助10
24秒前
时光悠应助自由的凌雪采纳,获得10
25秒前
勤恳兔子发布了新的文献求助10
28秒前
小巧天宇完成签到,获得积分10
29秒前
29秒前
29秒前
汤圆发布了新的文献求助30
30秒前
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Scents of China: A Modern History of Smell 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133401
求助须知:如何正确求助?哪些是违规求助? 3670375
关于积分的说明 11606146
捐赠科研通 3366772
什么是DOI,文献DOI怎么找? 1849725
邀请新用户注册赠送积分活动 913272
科研通“疑难数据库(出版商)”最低求助积分说明 828523