Discriminative Metric Learning for Partial Label Learning

判别式 人工智能 计算机科学 公制(单位) 机器学习 特征(语言学) 模棱两可 迭代学习控制 基本事实 模式识别(心理学) 集合(抽象数据类型) 哲学 经济 程序设计语言 控制(管理) 语言学 运营管理
作者
Xiuwen Gong,Dong Yuan,Wei Bao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 4428-4439 被引量:5
标识
DOI:10.1109/tnnls.2021.3118362
摘要

One simple strategy to deal with ambiguity in partial label learning (PLL) is to regard all candidate labels equally as the ground-truth label, and then solve the PLL problem using existing multiclass classification algorithms. However, due to the noisy false-positive labels in the candidate set, these approaches are readily mislead and do not generalize well in testing. Consequently, the method of identifying the ground-truth label straight from the candidate label set has grown popular and effective. When the labeling information in PLL is ambiguous, we ought to take advantage of the data's underlying structure, such as label and feature interdependencies, to conduct disambiguation. Furthermore, while metric learning is an excellent method for supervised learning classification that takes feature and label interdependencies into account, it cannot be used to solve the weekly supervised learning PLL problem directly due to the ambiguity of labeling information in the candidate label set. In this article, we propose an effective PLL paradigm called discriminative metric learning for partial label learning (DML-PLL), which aims to learn a Mahanalobis distance metric discriminatively while identifying the ground-truth label iteratively for PLL. We also design an efficient algorithm to alternatively optimize the metric parameter and the latent ground-truth label in an iterative way. Besides, we prove the convergence of the designed algorithms by two proposed lemmas. We additionally study the computational complexity of the proposed DML-PLL in terms of training and testing time for each iteration. Extensive experiments on both controlled UCI datasets and real-world PLL datasets from diverse domains demonstrate that the proposed DML-PLL regularly outperforms the compared approaches in terms of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
收声发布了新的文献求助10
刚刚
wanmiao12完成签到,获得积分10
1秒前
笑林完成签到 ,获得积分10
1秒前
李萍萍完成签到,获得积分10
1秒前
spring079完成签到,获得积分10
1秒前
甜甜千兰完成签到,获得积分10
2秒前
2秒前
西红柿SofM关注了科研通微信公众号
2秒前
3秒前
GGBOND完成签到,获得积分10
3秒前
LC2228完成签到,获得积分10
3秒前
小徐医生发布了新的文献求助10
4秒前
小蚂蚁完成签到 ,获得积分10
4秒前
my123完成签到,获得积分10
4秒前
空白娃娃完成签到,获得积分10
4秒前
5秒前
所所应助huohuo采纳,获得10
6秒前
6秒前
kuahiwuya发布了新的文献求助100
6秒前
小通完成签到,获得积分10
6秒前
搜集达人应助收声采纳,获得10
7秒前
7秒前
7秒前
11完成签到,获得积分10
7秒前
在水一方应助哈哈哈采纳,获得10
8秒前
慕容博发布了新的文献求助10
8秒前
洇澧完成签到,获得积分10
9秒前
不吃橘子完成签到,获得积分10
9秒前
榴莲奶黄包完成签到,获得积分10
9秒前
神sjsj发布了新的文献求助10
10秒前
贾昌波完成签到,获得积分10
10秒前
小徐医生完成签到,获得积分10
10秒前
科研通AI6应助fx采纳,获得10
11秒前
小圆子完成签到,获得积分10
11秒前
xcy完成签到 ,获得积分10
12秒前
小文完成签到,获得积分10
12秒前
Xiaoming85完成签到,获得积分10
13秒前
隐形曼青应助12345采纳,获得30
13秒前
单薄的沛蓝完成签到,获得积分10
14秒前
顾矜应助吨吨喝水采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4472966
求助须知:如何正确求助?哪些是违规求助? 3932136
关于积分的说明 12198805
捐赠科研通 3586747
什么是DOI,文献DOI怎么找? 1971653
邀请新用户注册赠送积分活动 1009558
科研通“疑难数据库(出版商)”最低求助积分说明 903284