Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing

计算卸载 计算机科学 强化学习 边缘计算 移动边缘计算 资源配置 计算 最优化问题 数学优化 理论计算机科学 人工智能 算法 GSM演进的增强数据速率 数学 计算机网络
作者
Huan Zhou,Kai Jiang,Xuxun Liu,Xiuhua Li,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 1517-1530 被引量:226
标识
DOI:10.1109/jiot.2021.3091142
摘要

Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named $Q$ -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep $Q$ network (DDQN)-based method, which can efficiently approximate the value function of $Q$ -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zzz_Carlos完成签到 ,获得积分10
刚刚
2秒前
woshidawan完成签到 ,获得积分20
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
tyy应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
benben055应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
打卡下班应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
安宇发布了新的文献求助10
5秒前
落雨发布了新的文献求助10
6秒前
Hello应助刘胖子采纳,获得10
7秒前
7秒前
诸葛嵩发布了新的文献求助10
9秒前
义气山水完成签到 ,获得积分10
10秒前
10秒前
Ava应助小璐璐呀采纳,获得10
10秒前
啦啦啦啦啦完成签到 ,获得积分10
13秒前
的服务费完成签到,获得积分10
14秒前
14秒前
15秒前
Yuksn完成签到,获得积分10
15秒前
轩轩轩轩完成签到 ,获得积分10
16秒前
daben应助清歌采纳,获得10
16秒前
17秒前
安宇完成签到,获得积分20
21秒前
runtang发布了新的文献求助200
21秒前
23秒前
miaomimi给miaomimi的求助进行了留言
25秒前
深情安青应助小学生库里采纳,获得10
26秒前
yang完成签到,获得积分10
27秒前
29秒前
zf完成签到,获得积分10
31秒前
31秒前
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
Stem Cells: Scientific Facts and Fiction 3rd Edition 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158022
求助须知:如何正确求助?哪些是违规求助? 3693745
关于积分的说明 11664531
捐赠科研通 3385037
什么是DOI,文献DOI怎么找? 1856871
邀请新用户注册赠送积分活动 918086
科研通“疑难数据库(出版商)”最低求助积分说明 831344