Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing

计算卸载 计算机科学 强化学习 边缘计算 移动边缘计算 资源配置 计算 最优化问题 数学优化 理论计算机科学 人工智能 算法 GSM演进的增强数据速率 数学 计算机网络
作者
Huan Zhou,Kai Jiang,Xuxun Liu,Xiuhua Li,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 1517-1530 被引量:281
标识
DOI:10.1109/jiot.2021.3091142
摘要

Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named $Q$ -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep $Q$ network (DDQN)-based method, which can efficiently approximate the value function of $Q$ -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助小田采纳,获得10
刚刚
刚刚
dasdsa发布了新的文献求助10
1秒前
高唐发布了新的文献求助10
1秒前
呼延惜珊完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
张静怡完成签到,获得积分10
1秒前
tang发布了新的文献求助10
1秒前
Cheryl发布了新的文献求助10
2秒前
松花蛋完成签到,获得积分10
2秒前
酷酷朋友发布了新的文献求助10
2秒前
russing完成签到 ,获得积分10
2秒前
xyawl425完成签到,获得积分10
3秒前
牧林听风完成签到,获得积分10
3秒前
勤劳紫青完成签到 ,获得积分10
4秒前
老实的雪柳完成签到,获得积分10
4秒前
哎嘿发布了新的文献求助10
4秒前
gloria发布了新的文献求助10
5秒前
神雕侠发布了新的文献求助50
5秒前
猪肉超人菜婴蚊完成签到,获得积分10
6秒前
cecisweet完成签到,获得积分10
6秒前
潇洒的凝梦完成签到,获得积分10
6秒前
君君菌菌博士完成签到,获得积分10
6秒前
123驳回了Lucas应助
6秒前
大饼完成签到 ,获得积分10
7秒前
7秒前
7秒前
guositing完成签到,获得积分10
7秒前
7秒前
wsy发布了新的文献求助10
7秒前
mdsd完成签到,获得积分10
8秒前
dasdsa完成签到,获得积分10
8秒前
HHHu完成签到,获得积分10
8秒前
科研通AI6应助FY采纳,获得10
8秒前
白踏歌完成签到,获得积分10
10秒前
杨家赘婿发布了新的文献求助10
10秒前
XUXU发布了新的文献求助10
10秒前
黑暗暴龙神完成签到,获得积分10
11秒前
John_sdu完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924