已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study

基本事实 人工智能 分割 锥束ct 计算机科学 精确性和召回率 试验装置 豪斯多夫距离 深度学习 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Eman Shaheen,André Ferreira Leite,Khalid Alqahtani,A. Smolders,Adriaan Van Gerven,Holger Willems,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:115: 103865-103865 被引量:82
标识
DOI:10.1016/j.jdent.2021.103865
摘要

Automatic tooth segmentation and classification from cone beam computed tomography (CBCT) have become an integral component of the digital dental workflows. Therefore, the aim of this study was to develop and validate a deep learning approach for an automatic tooth segmentation and classification from CBCT images.A dataset of 186 CBCT scans was acquired from two CBCT machines with different acquisition settings. An artificial intelligence (AI) framework was built to segment and classify teeth. Teeth were segmented in a three-step approach with each step consisting of a 3D U-Net and step 2 included classification. The dataset was divided into training set (140 scans) to train the model based on ground-truth segmented teeth, validation set (35 scans) to test the model performance and test set (11 scans) to evaluate the model performance compared to ground-truth. Different evaluation metrics were used such as precision, recall rate and time.The AI framework correctly segmented teeth with optimal precision (0.98±0.02) and recall (0.83±0.05). The difference between the AI model and ground-truth was 0.56±0.38 mm based on 95% Hausdorff distance confirming the high performance of AI compared to ground-truth. Furthermore, segmentation of all the teeth within a scan was more than 1800 times faster for AI compared to that of an expert. Teeth classification also performed optimally with a recall rate of 98.5% and precision of 97.9%.The proposed 3D U-Net based AI framework is an accurate and time-efficient deep learning system for automatic tooth segmentation and classification without expert refinement.The proposed system might enable potential future applications for diagnostics and treatment planning in the field of digital dentistry, while reducing clinical workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
明理的怜翠完成签到 ,获得积分10
2秒前
ZhouYW应助ifegiugfieugfig采纳,获得10
3秒前
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
6秒前
猪猪hero应助独眼采纳,获得10
6秒前
杨涛完成签到,获得积分10
6秒前
7秒前
栗子球发布了新的文献求助10
7秒前
7秒前
orchid发布了新的文献求助10
8秒前
笑笑发布了新的文献求助10
9秒前
清脆糖豆完成签到,获得积分10
10秒前
婷婷小笑应助charlie67373采纳,获得10
11秒前
12秒前
高c发布了新的文献求助30
12秒前
12秒前
倪永孝发布了新的文献求助10
13秒前
科研通AI5应助踏实的老四采纳,获得10
14秒前
sadf完成签到,获得积分20
14秒前
15秒前
慕青应助顺毛大帝采纳,获得10
15秒前
顾矜应助manguang采纳,获得10
16秒前
恢复出厂设置完成签到,获得积分10
16秒前
18秒前
19秒前
李归来完成签到 ,获得积分10
20秒前
wangliangyu发布了新的文献求助10
26秒前
路飞完成签到,获得积分10
28秒前
sadf发布了新的文献求助10
29秒前
娄本辉完成签到,获得积分10
29秒前
29秒前
31秒前
852应助Epiphany采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436