Gait Recognition via Effective Global-Local Feature Representation and Local Temporal Aggregation

步态 人工智能 计算机科学 判别式 模式识别(心理学) 特征(语言学) 特征提取 生物识别 计算机视觉 生理学 语言学 哲学 生物
作者
Beibei Lin,Shunli Zhang,Xin Yu
标识
DOI:10.1109/iccv48922.2021.01438
摘要

Gait recognition is one of the most important biometric technologies and has been applied in many fields. Recent gait recognition frameworks represent each gait frame by descriptors extracted from either global appearances or local regions of humans. However, the representations based on global information often neglect the details of the gait frame, while local region based descriptors cannot capture the relations among neighboring regions, thus reducing their discriminativeness. In this paper, we propose a novel feature extraction and fusion framework to achieve discriminative feature representations for gait recognition. Towards this goal, we take advantage of both global visual information and local region details and develop a Global and Local Feature Extractor (GLFE). Specifically, our GLFE module is composed of our newly designed multiple global and local convolutional layers (GLConv) to ensemble global and local features in a principle manner. Furthermore, we present a novel operation, namely Local Temporal Aggregation (LTA), to further preserve the spatial information by reducing the temporal resolution to obtain higher spatial resolution. With the help of our GLFE and LTA, our method significantly improves the discriminativeness of our visual features, thus improving the gait recognition performance. Extensive experiments demonstrate that our proposed method outperforms state-of-the-art gait recognition methods on two popular datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿司匹林发布了新的文献求助10
1秒前
浩浩发布了新的文献求助10
2秒前
笑点低凌寒完成签到,获得积分10
2秒前
拼搏大地发布了新的文献求助10
3秒前
JamesPei应助达达爱大雪采纳,获得10
4秒前
小山隹完成签到,获得积分10
4秒前
Zongxin完成签到,获得积分10
4秒前
sttich完成签到,获得积分10
5秒前
5秒前
5秒前
yang完成签到,获得积分10
6秒前
万能图书馆应助NatKao采纳,获得10
6秒前
bkagyin应助阿司匹林采纳,获得10
7秒前
8秒前
carryxu完成签到,获得积分10
9秒前
野原发布了新的文献求助10
9秒前
桐桐应助明亮无颜采纳,获得30
10秒前
旭日完成签到,获得积分10
11秒前
11秒前
无花果应助Ali1abdulrahman2采纳,获得10
11秒前
12秒前
chall完成签到,获得积分10
12秒前
13秒前
zyx完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
17秒前
Unicorn发布了新的文献求助10
18秒前
认真的紫寒完成签到,获得积分20
18秒前
进击的PhD应助假如采纳,获得20
19秒前
FashionBoy应助粱代芙采纳,获得10
20秒前
20秒前
周苗完成签到 ,获得积分20
21秒前
22秒前
爆米花应助123采纳,获得10
22秒前
23秒前
25秒前
26秒前
26秒前
26秒前
CipherSage应助达达爱大雪采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609