An effective model for predicting serum albumin level in hemodialysis patients

低蛋白血症 血液透析 血清白蛋白 内科学 特征选择 医学 列线图 人工智能 计算机科学
作者
Jiao Hu,Yi Liu,Ali Asghar Heidari,Yasmeen Bano,Alisherjon Ibrohimov,Guoxi Liang,Huiling Chen,Xumin Chen,Atef Zaguia,Hamza Turabieh
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:140: 105054-105054 被引量:17
标识
DOI:10.1016/j.compbiomed.2021.105054
摘要

Patients on hemodialysis (HD) are known to be at an increased risk of mortality. Hypoalbuminemia is one of the most important risk factors of death in HD patients, and is an independent risk factor for all-cause mortality that is associated with cardiac death, infection, and Protein-Energy Wasting (PEW). It is a clinical challenge to elevate serum albumin level. In addition, predicting trends in serum albumin level is effective for personalized treatment of hypoalbuminemia. In this study, we analyzed a total of 3069 records collected from 314 HD patients using a machine learning method that is based on an improved binary mutant quantum grey wolf optimizer (MQGWO) combined with Fuzzy K-Nearest Neighbor (FKNN). The performance of the proposed MQGWO method was evaluated using a series of experiments including global optimization experiments, feature selection experiments on open data sets, and prediction experiments on an HD dataset. The experimental results showed that the most critical relevant indicators such as age, presence or absence of diabetes, dialysis vintage, and baseline albumin can be identified by feature selection. Remarkably, the accuracy and the specificity of the method were 98.39% and 96.77%, respectively, demonstrating that this model has great potential to be used for detecting serum albumin level trends in HD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王华发布了新的文献求助10
2秒前
3秒前
Clara凤完成签到,获得积分10
3秒前
Yang完成签到,获得积分20
3秒前
啦啦发布了新的文献求助10
6秒前
欢喜绮ylq完成签到,获得积分20
6秒前
7秒前
ana完成签到 ,获得积分10
8秒前
无花果应助云起龙都采纳,获得10
9秒前
111发布了新的文献求助10
9秒前
Wt发布了新的文献求助10
9秒前
12秒前
盐植物完成签到,获得积分10
12秒前
12秒前
欢喜绮ylq发布了新的文献求助10
13秒前
隐形曼青应助Wt采纳,获得10
13秒前
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
残幻应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
nunu发布了新的文献求助10
19秒前
21秒前
啦啦完成签到,获得积分10
21秒前
22秒前
22秒前
UUU完成签到 ,获得积分10
22秒前
22秒前
111发布了新的文献求助30
23秒前
FashionBoy应助啦啦采纳,获得10
25秒前
flowck发布了新的文献求助10
27秒前
鹿子默发布了新的文献求助20
27秒前
所所应助翁雁丝采纳,获得10
27秒前
明天更好完成签到 ,获得积分10
31秒前
Cherish发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793299
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288400
捐赠科研通 3054639
什么是DOI,文献DOI怎么找? 1676091
邀请新用户注册赠送积分活动 804095
科研通“疑难数据库(出版商)”最低求助积分说明 761752