亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Force-induced activation of covalent bonds in mechanoresponsive polymeric materials

共价键 机械化学 聚合物 材料科学 机械敏感通道 弹性体 化学 网络共价键合 化学键 非共价相互作用 纳米技术 复合材料 分子 氢键 有机化学 受体 生物化学 离子通道
作者
Douglas A. Davis,Andrew Hamilton,Jinglei Yang,Lee D. Cremar,Dara Van. Gough,Stephanie Potisek,Mitchell T. Ong,Paul V. Braun,Todd J. Martı́nez,Scott R. White,Jeffrey S. Moore,Nancy R. Sottos
出处
期刊:Nature [Springer Nature]
卷期号:459 (7243): 68-72 被引量:1452
标识
DOI:10.1038/nature07970
摘要

Biology is replete with materials systems that actively and functionally respond to mechanical stimuli and thereby enable physiological processes such as the sense of touch, hearing or the growth of tissue and bone. In contrast, exposing polymers to large stresses tends to result in covalent bond rupture and hence damage or failure. Davis et al. now demonstrate that synthetic materials can be rationally designed to ensure that mechanical stress alters their properties in a useful manner. This is realized by incorporating a chemical group that responds to mechanical stress by changing its colour to red as it undergoes a ring-opening reaction, enabling the team to directly monitor the accumulation of plastic deformation. The principles underpinning this work should enable the development of other force-responsive chemical groups that could impart synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Exposing synthetic materials to large stresses tends to result in simple failure, unlike many biological systems, which respond by enabling physiological processes such as hearing and balance. But by incorporating a chemical group that responds to mechanical stress by changing its colour, it is possible to monitor the accumulation of plastic deformation directly in a synthetic polymer. This principle could be used to design synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and bone1,2,3,4,5,6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress favourably alters material properties. A few mechanosensitive polymers with this property have been developed8,9,10,11,12,13,14; but their active response is mediated through non-covalent processes, which may limit the extent to which properties can be modified and the long-term stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such force-induced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助夜雨采纳,获得10
1分钟前
songyongjian发布了新的文献求助10
1分钟前
songyongjian完成签到,获得积分10
2分钟前
2分钟前
2分钟前
夜雨发布了新的文献求助10
2分钟前
资白玉完成签到 ,获得积分10
3分钟前
从容芮应助Andrewlabeth采纳,获得10
4分钟前
4分钟前
5分钟前
6分钟前
本本完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
XJ发布了新的文献求助10
7分钟前
8分钟前
8分钟前
CipherSage应助gy采纳,获得10
8分钟前
9分钟前
9分钟前
10分钟前
10分钟前
奎奎完成签到 ,获得积分10
10分钟前
11分钟前
11分钟前
12分钟前
笑容完成签到,获得积分10
12分钟前
13分钟前
游大达完成签到 ,获得积分10
13分钟前
肆肆完成签到,获得积分10
13分钟前
华仔应助夜神月采纳,获得10
13分钟前
gy完成签到,获得积分10
13分钟前
13分钟前
13分钟前
gy发布了新的文献求助10
14分钟前
夜神月发布了新的文献求助10
14分钟前
juan完成签到 ,获得积分10
14分钟前
冉亦完成签到,获得积分10
15分钟前
高分求助中
Formgebungs- und Stabilisierungsparameter für das Konstruktionsverfahren der FiDU-Freien Innendruckumformung von Blech 1000
IG Farbenindustrie AG and Imperial Chemical Industries Limited strategies for growth and survival 1925-1953 800
The Illustrated History of Gymnastics 800
The Bourse of Babylon : market quotations in the astronomical diaries of Babylonia 680
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 600
[Echocardiography and tissue Doppler imaging in assessment of haemodynamics in patients with idiopathic, premature ventricular complexes] 600
Prochinois Et Maoïsmes En France (et Dans Les Espaces Francophones) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2514033
求助须知:如何正确求助?哪些是违规求助? 2161733
关于积分的说明 5536367
捐赠科研通 1881750
什么是DOI,文献DOI怎么找? 936558
版权声明 564319
科研通“疑难数据库(出版商)”最低求助积分说明 499954