Gel–Print–Grow: A New Way of 3D Printing Metal–Organic Frameworks

材料科学 金属有机骨架 3D打印 纳米技术 工艺工程 冶金 有机化学 工程类 吸附 化学
作者
Shane Lawson,Abdo-Aslam Alwakwak,Ali A. Rownaghi,Fateme Rezaei
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (50): 56108-56117 被引量:79
标识
DOI:10.1021/acsami.0c18720
摘要

3D printing offers an attractive means of forming structured metal-organic frameworks (MOFs), as this technique imparts digital geometric tuning to fit any process column. However, 3D-printed MOF structures are usually formed by suspending presynthesized particles into an ink for further processing. This leads to poor rheological properties as MOFs do not bind with inert binders. Herein, we address this problem by coordinating the MOF secondarily by 3D printing its gelated precursors. Specifically, we produced a printable sol-gel containing ∼70 wt % of HKUST-1 precursors and optimized the in situ growth conditions by varying the desolvation temperature and activation solvent. Analysis of the so-called gel-print-grow monoliths' properties as a function of the coordination variables revealed that desolvating at 120 °C produced fully formed MOF particles with comparable diffractive indices to the parent powder regardless of the activation solvent used. Assessment of the samples' textural properties revealed that washing in acetone or methanol produced the highest surface areas, pore volumes, and CO2 adsorption capacities, however, washing with methanol produced binder swelling and collapse of the printed structure, thereby indicating that washing with acetone was more effective overall. This study represents a promising way of 3D printing MOFs and a breakthrough in additive manufacturing, since the simple, high-throughput, framework detailed herein-whereby the synthesis temperature and washing solvent are varied to optimize MOF coordination-could easily be applied to other crystallites. As such, it is anticipated that this new and exciting method will provide new paths to shape engineer MOFs for applications in energy-intensive fields and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活力的寻云完成签到,获得积分10
刚刚
简单怡应助科研通管家采纳,获得20
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
简单怡应助科研通管家采纳,获得20
刚刚
Hello应助科研通管家采纳,获得10
刚刚
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
典雅巧蕊完成签到 ,获得积分10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
liying应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
liying应助科研通管家采纳,获得10
1秒前
雨点完成签到,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
我是老大应助成一派采纳,获得10
1秒前
一亩蔬菜完成签到,获得积分10
1秒前
all完成签到,获得积分10
1秒前
2秒前
负责天问完成签到,获得积分10
2秒前
下次见发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
fantasyyy完成签到,获得积分10
3秒前
3秒前
Xu_W卜发布了新的文献求助10
3秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5725041
求助须知:如何正确求助?哪些是违规求助? 5293936
关于积分的说明 15302192
捐赠科研通 4872804
什么是DOI,文献DOI怎么找? 2617190
邀请新用户注册赠送积分活动 1567013
关于科研通互助平台的介绍 1524041