Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright

纳米颗粒 激子 兴奋剂 镧系元素 转身(生物化学) 纳米技术 化学 材料科学 离子 光电子学 物理 凝聚态物理 生物化学 有机化学
作者
Sanyang Han,Renren Deng,Qifei Gu,Limeng Ni,Uyen Huynh,Jiangbin Zhang,Zhigao Yi,Baodan Zhao,Hiroyuki Tamura,Anton Pershin,Hui Xu,Zhiyuan Huang,Shahab Ahmad,Mojtaba Abdi‐Jalebi,Aditya Sadhanala,Ming Lee Tang,Artem A. Bakulin,David Beljonne,Xiaogang Liu,Akshay Rao
出处
期刊:Nature [Nature Portfolio]
卷期号:587 (7835): 594-599 被引量:170
标识
DOI:10.1038/s41586-020-2932-2
摘要

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron–hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin–orbit coupling9–11 or tuning of the singlet–triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle–molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide–triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research. Optically dark (non-emitting) triplet excitons on organic molecules may be rendered bright by coupling the molecules to lanthanide-doped nanoparticles, providing a way to control such excitons in optoelectronic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chenjintt发布了新的文献求助10
刚刚
达斯维完成签到,获得积分10
刚刚
1秒前
2秒前
谢杭呈完成签到,获得积分20
4秒前
Nes发布了新的文献求助30
4秒前
112233发布了新的文献求助10
4秒前
小蘑菇应助Lee采纳,获得10
4秒前
美丽又莲完成签到,获得积分10
4秒前
concise完成签到 ,获得积分10
5秒前
cg发布了新的文献求助10
5秒前
鑫渊完成签到,获得积分10
5秒前
柒柒发布了新的文献求助10
6秒前
6秒前
光芒万丈完成签到,获得积分20
6秒前
6秒前
7秒前
锵崽锵崽发布了新的文献求助10
7秒前
8秒前
史塔西完成签到,获得积分10
8秒前
8秒前
小虫学长应助叁壹捌采纳,获得10
11秒前
qqq发布了新的文献求助10
11秒前
大轩发布了新的文献求助10
12秒前
12秒前
史塔西发布了新的文献求助10
12秒前
Yang完成签到,获得积分10
13秒前
淡然钢笔完成签到,获得积分10
13秒前
张思梦发布了新的文献求助10
14秒前
野性的曼香完成签到 ,获得积分10
16秒前
慕青应助yinyin采纳,获得10
17秒前
搜集达人应助优秀的鹤轩采纳,获得10
17秒前
汉堡包应助锵崽锵崽采纳,获得10
17秒前
星之芋发布了新的文献求助10
17秒前
852应助小豆采纳,获得10
18秒前
tiger发布了新的文献求助10
18秒前
拼搏战斗机完成签到 ,获得积分10
20秒前
21秒前
科研通AI5应助闪闪的屁股采纳,获得10
21秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820683
求助须知:如何正确求助?哪些是违规求助? 3363576
关于积分的说明 10423882
捐赠科研通 3081997
什么是DOI,文献DOI怎么找? 1695408
邀请新用户注册赠送积分活动 815083
科研通“疑难数据库(出版商)”最低求助积分说明 768856