RF Fingerprinting Unmanned Aerial Vehicles With Non-Standard Transmitter Waveforms

分类器(UML) 计算机科学 发射机 人工智能 稳健性(进化) 人工神经网络 无线 波形 模式识别(心理学) 实时计算 机器学习 频道(广播) 计算机网络 电信 基因 生物化学 化学 雷达
作者
Nasim Soltani,Guillem Reus-Muns,Batool Salehi,Jennifer Dy,Stratis Ioannidis,Kaushik Chowdhury
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (12): 15518-15531 被引量:86
标识
DOI:10.1109/tvt.2020.3042128
摘要

The universal availability of unmanned aerial vehicles (UAVs) has resulted in many applications where the same make/model can be deployed by multiple parties. Thus, identifying a specific UAV in a given swarm, in a manner that cannot be spoofed by software methods, becomes important. We propose RF fingerprinting for this purpose, where a neural network learns subtle imperfections present in the transmitted waveform. For UAVs, the constant hovering motion raises a key challenge, which remains a fundamental problem in previous works on RF fingerprinting: Since the wireless channel changes constantly, the network trained with a previously collected dataset performs poorly on the test data. The main contribution of this paper is to address this problem by: (i) proposing a multi-classifier scheme with a two-step score-based aggregation method, (ii) using RF data augmentation to increase neural network robustness to hovering-induced variations, and (iii) extending the multi-classifier scheme for detecting a new UAV, not seen earlier during training. Importantly, our approach permits RF fingerprinting on manufacturer-proprietary waveforms that cannot be decoded or altered by the end-user. Results reveal a near two-fold accuracy in UAV classification through our multi-classifier method over the single-classifier case, with an overall accuracy of 95% when tested with data under unseen channel. Our multi-classifier scheme also improves new UAV detection accuracy to a near perfect 99%, up from 68% for a single neural network approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费凝海完成签到,获得积分10
刚刚
刚刚
Gaowenjie发布了新的文献求助10
1秒前
隐形曼青应助byumi采纳,获得10
1秒前
郭子仪发布了新的文献求助10
2秒前
Dynia完成签到 ,获得积分10
3秒前
ccccccccc123发布了新的文献求助30
3秒前
susu发布了新的文献求助30
3秒前
3秒前
田様应助abala采纳,获得20
4秒前
xuan发布了新的文献求助50
5秒前
5秒前
lc001完成签到,获得积分10
6秒前
bkagyin应助micaixing2006采纳,获得10
6秒前
完美世界应助蔺铁身采纳,获得20
6秒前
6秒前
amberzyc应助蝉鸣一夏采纳,获得10
6秒前
彭于晏应助wang采纳,获得10
6秒前
华仔应助LNE采纳,获得10
7秒前
汤婆婆发布了新的文献求助10
7秒前
7秒前
8秒前
家平灵完成签到,获得积分20
9秒前
CodeCraft应助马海英采纳,获得10
9秒前
9秒前
能行能行能行完成签到,获得积分20
10秒前
阔达静曼完成签到,获得积分10
10秒前
文心发布了新的文献求助10
11秒前
淡定的紫青完成签到,获得积分10
11秒前
11秒前
11秒前
常远完成签到,获得积分10
11秒前
11秒前
12秒前
wnn完成签到,获得积分10
12秒前
JarryChao发布了新的文献求助10
12秒前
12秒前
第一刺客完成签到,获得积分10
12秒前
11111完成签到,获得积分10
12秒前
SciGPT应助谦让雨柏采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632146
求助须知:如何正确求助?哪些是违规求助? 4726435
关于积分的说明 14981405
捐赠科研通 4790127
什么是DOI,文献DOI怎么找? 2558203
邀请新用户注册赠送积分活动 1518601
关于科研通互助平台的介绍 1479045