Interpretation of Depression Detection Models via Feature Selection Methods

特征选择 人工智能 计算机科学 模式识别(心理学) 口译(哲学) 特征(语言学) 机器学习 萧条(经济学) 选择(遗传算法) 自然语言处理 心理学 语言学 哲学 宏观经济学 经济 程序设计语言
作者
Sharifa Alghowinem,Tom Gedeon,Roland Goecke,Jeffrey F. Cohn,Gordon Parker
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (1): 133-152 被引量:55
标识
DOI:10.1109/taffc.2020.3035535
摘要

Given the prevalence of depression worldwide and its major impact on society, several studies employed artificial intelligence modelling to automatically detect and assess depression. However, interpretation of these models and cues are rarely discussed in detail in the AI community, but have received increased attention lately. In this article, we aim to analyse the commonly selected features using a proposed framework of several feature selection methods and their effect on the classification results, which will provide an interpretation of the depression detection model. The developed framework aggregates and selects the most promising features for modelling depression detection from 38 feature selection algorithms of different categories. Using three real-world depression datasets, 902 behavioural cues were extracted from speech behaviour, speech prosody, eye movement and head pose. To verify the generalisability of the proposed framework, we applied the entire process to depression datasets individually and when combined. The results from the proposed framework showed that speech behaviour features (e.g. pauses) are the most distinctive features of the depression detection model. From the speech prosody modality, the strongest feature groups were F0, HNR, formants, and MFCC, while for the eye activity modality they were left-right eye movement and gaze direction, and for the head modality it was yaw head movement. Modelling depression detection using the selected features (even though there are only 9 features) outperformed using all features in all the individual and combined datasets. Our feature selection framework did not only provide an interpretation of the model, but was also able to produce a higher accuracy of depression detection with a small number of features in varied datasets. This could help to reduce the processing time needed to extract features and creating the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助飘逸问兰采纳,获得10
2秒前
简简单单完成签到 ,获得积分10
3秒前
无辜的行云完成签到 ,获得积分0
3秒前
minnie完成签到 ,获得积分10
6秒前
酷酷的树叶完成签到 ,获得积分10
6秒前
FloppyWow完成签到 ,获得积分10
15秒前
哭泣青烟完成签到 ,获得积分10
16秒前
ipcy完成签到 ,获得积分10
19秒前
24秒前
飘逸问兰发布了新的文献求助10
29秒前
qiancib202完成签到,获得积分10
34秒前
握瑾怀瑜完成签到 ,获得积分0
34秒前
Lauren完成签到 ,获得积分10
45秒前
onevip完成签到,获得积分0
47秒前
Esperanza完成签到,获得积分10
56秒前
56秒前
犹豫野狼完成签到 ,获得积分10
56秒前
cici完成签到 ,获得积分10
58秒前
饱满烙完成签到 ,获得积分10
1分钟前
绿袖子完成签到,获得积分10
1分钟前
老迟到的羊完成签到 ,获得积分10
1分钟前
zuhangzhao完成签到 ,获得积分10
1分钟前
hebhm完成签到,获得积分10
1分钟前
Ava应助Will采纳,获得10
1分钟前
祥子完成签到,获得积分10
1分钟前
GG完成签到 ,获得积分10
1分钟前
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
hzauhzau完成签到 ,获得积分10
1分钟前
benzene完成签到 ,获得积分10
1分钟前
青山落日秋月春风完成签到,获得积分10
1分钟前
1分钟前
Will发布了新的文献求助10
1分钟前
提莫silence完成签到 ,获得积分10
1分钟前
灌水大王完成签到 ,获得积分10
1分钟前
cq_2完成签到,获得积分0
1分钟前
晁子枫完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
天使的诱惑913完成签到 ,获得积分10
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800967
求助须知:如何正确求助?哪些是违规求助? 3346537
关于积分的说明 10329541
捐赠科研通 3063048
什么是DOI,文献DOI怎么找? 1681330
邀请新用户注册赠送积分活动 807474
科研通“疑难数据库(出版商)”最低求助积分说明 763721