Evaluation of recast layer and parametric optimization of EDM process on aluminium based HMMCs using grey relational analysis

灰色关联分析 电火花加工 材料科学 机械加工 可加工性 正交数组 铝合金 过程变量 复合材料 响应面法 热导率 金属基复合材料 参数统计 电压 机械工程 过程(计算) 田口方法 计算机科学 冶金 数学 工程类 数理经济学 机器学习 电气工程 操作系统 统计
作者
T. S. Senthilkumar,R. Muralikannan
出处
期刊:Materials research express [IOP Publishing]
卷期号:6 (10): 1065a6-1065a6 被引量:16
标识
DOI:10.1088/2053-1591/ab3d73
摘要

Metal Matrix Composites (MMCs) have a distinct property such as superior strength, higher elastic modules, augmented wear resistance, decreased weight, and high thermal conductivity as compared to the unreinforced alloy. Due to these superior properties MMCs are difficult for machining in conventional process. Hence, an advanced machining process namely Electrical discharge machining (EDM) process was utilized. In this existent work, an optimization technique called grey relational analysis is employed by optimizing the input process parameters to expose the optimal condition for enhancing the machinability and surface quality of aluminium based hybrid metal matrix composites (HMMCs) during Electrical Discharge Machining (EDM) process. The HMMCs is machined by EDM technique by scrutinizing the input parameters such as peak current (A), pulse on time (μs) and gap voltage (v) under L27 orthogonal array. A response table was exposed to indicate the optimum conditions of the individual parameter. The ANOVA results designates that peak current is the most contributing parameter for all the samples. Finally, a verification test is conducted to authorize the optimal conditions which were derived from the response table. Further the surface effects of the machined surface such as recast layer and machined surface at the circumferential area are analysed. The recast layer is developed on the machined surface at high peak current and pulse on time. At high pulse on time, extreme heat energy was generated which increases the irregular surface on the circumferential area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wdy发布了新的文献求助30
1秒前
zzb发布了新的文献求助10
1秒前
Hyde完成签到,获得积分10
1秒前
酷波er应助水博士采纳,获得10
2秒前
lxx完成签到,获得积分10
2秒前
ZYH发布了新的文献求助10
2秒前
鳗鱼千雁完成签到,获得积分10
2秒前
ferry123完成签到,获得积分10
3秒前
pantutu发布了新的文献求助10
3秒前
会化蝶发布了新的文献求助10
3秒前
mc发布了新的文献求助10
3秒前
hawaii66完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
是人我吃发布了新的文献求助10
5秒前
6秒前
6秒前
开心果大王完成签到,获得积分10
6秒前
活泼莫英发布了新的文献求助10
7秒前
GGBond完成签到,获得积分10
8秒前
Freya发布了新的文献求助10
9秒前
低调小狗完成签到,获得积分10
9秒前
24豆发布了新的文献求助10
9秒前
斯文又夏完成签到,获得积分10
9秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
bkagyin应助科研通管家采纳,获得30
10秒前
好运连连发布了新的文献求助10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
Lllll发布了新的文献求助10
11秒前
orixero应助科研通管家采纳,获得30
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
能干世倌应助科研通管家采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926