Conductive 2D MOF Coupled with Superprotonic Conduction and Interfacial Pseudo-capacitance

电容 导电体 热传导 材料科学 光电子学 复合材料 化学 电极 物理化学
作者
Yanfei Zhu,Zhiyong Tang
出处
期刊:Matter [Elsevier]
卷期号:2 (4): 798-800 被引量:19
标识
DOI:10.1016/j.matt.2020.03.006
摘要

It remains challenging to integrate protonic conductive metal-organic frameworks (MOFs) with efficient electrical conductivity. Recently in Matter, Su et al. reported a novel two-dimensional (2D) MOF with carboxylic acid groups showing high electrical conductivity, originating from the superprotonic conduction and protonic/interfacial pseudo-capacitance coupling. It remains challenging to integrate protonic conductive metal-organic frameworks (MOFs) with efficient electrical conductivity. Recently in Matter, Su et al. reported a novel two-dimensional (2D) MOF with carboxylic acid groups showing high electrical conductivity, originating from the superprotonic conduction and protonic/interfacial pseudo-capacitance coupling. Proton-conducting materials have attracted considerable attentions for their role as electrolytes in sensors, batteries, fuel cells, and so on.1Hossain H. Abdalla A.M. Jamain S.N.B. Zaini J.H. Azad A. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells.Renew. Sustain. Energy Rev. 2017; 79: 750-764Crossref Scopus (260) Google Scholar Metal-organic frameworks (MOFs) have recently been investigated as possible candidates for proton-conducting applications,2Ramaswamy P. Wong N.E. Shimizu G.K. MOFs as proton conductors--challenges and opportunities.Chem. Soc. Rev. 2014; 43: 5913-5932Crossref PubMed Google Scholar by the virtue of high crystallinity, rich pore structure, easy tailorable chemistry, and systematic structural variation. It is noted that previous works are mainly focused on investigation of three-dimensional (3D) proton-conductive MOFs,3Kim S. Joarder B. Hurd J.A. Zhang J. Dawson K.W. Gelfand B.S. Wong N.E. Shimizu G.K.H. Achieving superprotonic conduction in metal-organic frameworks through iterative design advances.J. Am. Chem. Soc. 2018; 140: 1077-1082Crossref Scopus (201) Google Scholar and the 2D proton-conductive MOFs that are promising for development of new nano/quantum devices are rarely touched. More significantly, single 2D MOF coupled with protonic (ion) and electrical conductance has never been explored. Very impressively, Su et al.4Su J. He W. Li X.M. Sun L. Wang H.Y. Lan Y.Q. Ding M.N. Zuo J.L. High electrical conductivity in a 2D MOF with intrinsic superprotonic conduction and interfacial pseudo-capacitance.Matter. 2020; 2: 711-722Abstract Full Text Full Text PDF Scopus (77) Google Scholar recently reported that the enhanced conductivity and a mixed protonic/electrical conduction could be realized in a novel 2D MOF containing redox-active tetrathiafulvalene (TTF)-based linkers. Owing to the designability of MOFs, three rational strategies might be adopted to incorporate proton carries into MOFs: (i) selecting high-valence metal ions as nodes; (ii) introducing protonated counterions or guest molecules in pores; and (iii) functionalizing the frameworks with acidic groups. In this issue of Matter, Su and colleagues prepared two 2D proton-conductive MOFs, [(CH3)2NH2][In(m-TTFTB)] (MOF-1) and [(CH3)2NH2][In(TTFOC)] (MOF-2), assembled from high-valence In3+ and TTF-based linkers (tetrathiafulvalene tetrabenzoic acid (m-H4TTFTB) and tetrathiafulvalene octacarboxylates (H8TTFOC)) following the above design principles (Figure 1A). Compared with 2D MOF-1, 2D MOF-2 with additional uncoordinated carboxylic acid groups exhibits higher solvent-accessible volume, superior protonic conduction, favorable proton conduction pathway, and unique interfacial pseudo-capacitance. The electrochemical impedance measurement is known to be a powerful method to disclose the bulk proton conductivity behavior.5Müller F. Ferreira C.A. Azambuja D.S. Alemán C. Armelin E. Measuring the proton conductivity of ion-exchange membranes using electrochemical impedance spectroscopy and through-plane cell.J. Phys. Chem. B. 2014; 118: 1102-1112Crossref Scopus (75) Google Scholar In this study, Su and colleagues determined the alternating current (AC) impedance of 2D MOF-1 and MOF-2 in pressed powder pellets under variable humidity and temperature. Notably, the highest proton conductivity of MOF-1 and MOF-2 (343 K and 98% RH) reaches 7.39 × 10−3 and 1.69 × 10−2 S cm−1, respectively. In addition, the temperature and proton conductivity extracted from AC impedance measurement is fitted with the Einstein-Nernst equation, further extrapolating the activation energy of these materials (Figure 1B). The summarized results for MOF-1, MOF-2, and other reported representative materials are listed in Figure 1C at around 303 K and 98% RH. Very impressively, MOF-2 indicates the comparative proton conductivity and much lower activation energy (0.09 eV) even compared with commercial proton conductor Nafion. This low active energy suggests that MOF-2 follows the proton hopping (Grotthuss) mechanism6Grancha T. Soria J.F. Cano J. Amorós P. Seoane B. Gascon J. Garcĺa M.B. Losilla E.R. Cabeza A. Armentano D. et al.Insights into the dynamics of grotthuss mechanism in a pronton-conducting chiral bioMOF.Chem. Mater. 2016; 28: 4608-4615Crossref Scopus (93) Google Scholar (Ea < 0.4 eV), where the conduction of protons migrates among absorbed coordinated water molecule, balanced dimethylammonium cations, and strong hydrogen bond networks formed with uncoordinated carboxylic groups. As for state-of-the-art proton (ion) conductive MOFs, one major challenge lies in how to integrate MOF conductor into real devices because the proton conductive pathway usually blocks at the MOF and electrode interface, thus leading to an overall capacitive charging behavior. Despite numerous progresses that have been made on the mixed electronic and ionic conductivity for the conjugated polymers,7Berggren M. Crispin X. Fabiano S. Jonsson M.P. Simon D.T. Stavrinidou E. Tybrandt K. Zozoulenko I. Ion electron coupled functionality in materials and devices based on conjugated polymers.Adv. Mater. 2019; 31: e1805813Crossref Scopus (83) Google Scholar there is no suitable solution for conductive MOFs until now. In Su’s work, what’s exciting is that 2D superprotonic conductive MOF-2 demonstrates excellent overall direct current electrical conductivity (4.05 × 10−3 S cm-1 at 303 K and 90% RH) as it is placed in contact with metal electrode (Figure 1D), which is comparable with the intrinsic electron conductive MOFs.8Sun L. Campbell M.G. Dincă M. Electrically conductive porous metal-organic frameworks.Angew. Chem. Int. Ed. Engl. 2016; 55: 3566-3579Crossref PubMed Scopus (1169) Google Scholar It deserves to be stressed that the typical current-voltage (I-V) curve of MOF-2 in vacuum only displays a linear behavior and much lower conductivity (1.69 × 10−8 S cm-1), revealing the negligible intrinsic electron conduction of MOF-2. Why does the ionic conductive MOF-2 show high overall electrical conductivity without intrinsic electron conduction? Su et al. innovatively propose a pseudo-capacitance process to explain interfacial conductivity between MOF and electrode. The authors comprehensively elucidate the interfacial pseudo-capacitance (electrical) mechanism with cyclic voltammetry (CV) tests for pure m-H4TTFTB, H8TTFOC, MOF-1, and MOF-2. Upon anodic scanning, both m-H4TTFTB and H8TTFOC in N,N-dimethylformamide (DMF) solution containing 0.1 M LiBF4 display reversible one-electron processes at 0.18 V/0.50 V and 0.17 V/0.42 V (versus Fc/Fc+), which are attributed to the TTF/TTF⋅+ and TTF⋅+/TTF2+ redox couples, respectively. The redox activity of the ligands could inherit to 2D MOF-1 and MOF-2, based on the fact that solid-state direct current CV study on MOF-1 and MOF-2 also shows similar two quasi-reversible one-electron processes (Figure 1E) at 0.17 V/0.50 V and 0.27 V/0.59 V, respectively (versus Fc/Fc+). Importantly, the typical I-V curve of MOF-2 placed in contact with metal electrode at 303 K and 90% RH also exhibits a non-linear I-V behavior and two couples of peaks in the range of −2 V to 2 V (inset of Figure 1D). These two couples of peaks are quite similar to TTF/TTF⋅+ and TTF⋅+/TTF2+ redox couples. Evidently, owing to the redox activity of TTF-based ligands, the conductivity of MOF-electrode interface is considerably enhanced. Hence, the authors deduce that the mixed proton/interfacial pseudo-capacitance conductive mechanism is responsible for overall electrical conduction in the device. Still, some key issues need to be addressed in future work. For instance, there is a long way to integrate proton (ion) conductive MOFs into functional devices, such as electrochemical transistor, electrochromic devices, and surface switches. And furthermore, it keeps unclear whether the interfacial pseudo-capacitance conductive mechanism is general and applicable for the MOFs constructed with other redox ligands. In conclusion, a mixed proton/interfacial pseudo-capacitance conductive mechanism is first demonstrated in 2D MOFs. This work opens the door toward rational design and synthesis of new ionically and electrically conductive MOFs for emerging energy and information devices. High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitanceSu et al.MatterJanuary 22, 2020In BriefIntegrating efficient ionic and electrical conduction in metal-organic frameworks (MOFs) is desired for their applications in clean energy technologies. We present the rational design and synthesis of an MOF with unbound carboxyl groups that facilitate high proton conductivity and redox-active ligands that mediate efficient electrical conduction at the MOF-metal interface through a coupled ionic/pseudo-capacitive conduction mechanism. The design strategy presented here offers guidance to the future development of ionically and electrically conductive MOFs for energy-storage devices. Full-Text PDF Open Archive
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
科研通AI6应助是希希啊a采纳,获得10
刚刚
wn2020wn完成签到,获得积分10
1秒前
1秒前
路遇惊鸿发布了新的文献求助10
2秒前
3秒前
自然的致远完成签到,获得积分10
3秒前
结实缘郡发布了新的文献求助10
3秒前
yiyi发布了新的文献求助10
3秒前
4秒前
mmmmm发布了新的文献求助10
4秒前
木木贴地飞行完成签到,获得积分10
4秒前
4秒前
5秒前
华仔应助坚定白卉采纳,获得10
6秒前
Akim应助baibaibai采纳,获得10
6秒前
6秒前
Xiong发布了新的文献求助10
6秒前
大Doctor陈完成签到,获得积分10
7秒前
36456657应助1774181866采纳,获得10
7秒前
7秒前
lyrisly发布了新的文献求助10
8秒前
爆米花应助dayaya采纳,获得10
8秒前
guoduan发布了新的文献求助10
8秒前
9秒前
yupguo发布了新的文献求助10
9秒前
9秒前
深情安青应助阮玖采纳,获得10
10秒前
大Doctor陈发布了新的文献求助10
10秒前
10秒前
勤奋灵凡发布了新的文献求助10
10秒前
逍遥呱呱发布了新的文献求助10
11秒前
ding应助今夜无人入眠采纳,获得10
11秒前
香蕉觅云应助陈陈采纳,获得10
11秒前
11秒前
柳沙鸣发布了新的文献求助10
11秒前
Su完成签到,获得积分10
11秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238