Efficient Generation of Speech Adversarial Examples with Generative Model

计算机科学 生成语法 人工智能 对抗制 语音识别 生成对抗网络 生成模型 发电机(电路理论) 鉴别器 语音增强
作者
Donghua Wang,Rangding Wang,Li Dong,Diqun Yan,Yiming Ren
出处
期刊:Lecture Notes in Computer Science 卷期号:: 251-264 被引量:1
标识
DOI:10.1007/978-3-030-69449-4_19
摘要

Deep neural network-based keyword spotting (KWS) have embraced the tremendous success in smart speech assistant applications. However, the neural network-based KWS have been demonstrated susceptible to be attacked by the adversarial examples. The investigation of efficient adversarial generation would mitigate the security flaws of network-based KWS via adversarial training. In this paper, we propose to use the conditional generative adversarial network (CGAN) to efficiently generate speech adversarial examples. Specifically, we first present a target label embedding method to map the class-wise label into feature maps. Then, we utilize generative adversarial network for constructing the target speech adversarial examples with such feature maps. The target KWS classification network is then integrated with CGAN framework, where the classification error of the target network is back-propagated via gradient flow to guide the generator updating, but the target network itself is frozen. The proposed method is evaluated on a set of state-of-the-art deep learning-based KWS classification networks. The results validate the effectiveness of the generated adversarial examples. In addition, experimental results also demonstrate that the transferability of generated adversarial example among the different KWS classification networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大佬求带发布了新的文献求助10
刚刚
刚刚
2秒前
2秒前
clearsky完成签到,获得积分10
2秒前
khalifa发布了新的文献求助10
4秒前
baibai完成签到,获得积分10
4秒前
JamesPei应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助赫连紫采纳,获得10
6秒前
小沅完成签到,获得积分10
7秒前
老隋发布了新的文献求助10
8秒前
littleprince发布了新的文献求助10
8秒前
111完成签到 ,获得积分10
8秒前
khalifa完成签到,获得积分10
10秒前
姜姜完成签到,获得积分10
10秒前
小沅发布了新的文献求助10
10秒前
11秒前
back you up应助nold采纳,获得30
11秒前
李爱国应助zz采纳,获得10
12秒前
12秒前
13秒前
项阑悦发布了新的文献求助10
14秒前
淡然老头完成签到 ,获得积分10
14秒前
852应助老隋采纳,获得10
14秒前
我是老大应助漂亮水绿采纳,获得10
15秒前
zeng发布了新的文献求助20
15秒前
ggg完成签到,获得积分10
15秒前
15秒前
书篆发布了新的文献求助30
16秒前
现代雁桃发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
项阑悦完成签到,获得积分10
19秒前
AHR发布了新的文献求助10
19秒前
高高冰蝶应助SuLi_ALL采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777