Exposure to multiple heavy metals associate with aberrant immune homeostasis and inflammatory activation in preschool children

免疫系统 炎症 免疫学 化学 淋巴细胞 平衡 细胞因子 医学 内分泌学 有机化学
作者
Yu Zhang,Xia Huo,Xueling Lu,Zhijun Zeng,Marijke M. Faas,Xijin Xu
出处
期刊:Chemosphere [Elsevier BV]
卷期号:257: 127257-127257 被引量:71
标识
DOI:10.1016/j.chemosphere.2020.127257
摘要

Heavy metals generate adverse health effects by interfering with immune homeostasis and promoting inflammation in individuals. Our objective was to explore the induction of immune and inflammatory responses by multiple heavy metals in children living in the e-waste contaminated area. A total of 147 preschool children were recruited, including 73 children from Guiyu, a typical e-waste recycling area, and 74 from a reference group. Blood levels of heavy metals, including lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As), were detected using an inductively coupled plasma mass spectrometry (ICP-MS). Immune cell counts (neutrophils, monocytes, lymphocytes) were determined by an automatic blood cell analyzer, pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and anti-inflammatory cytokines (IL-1RA, IL-4, IL-10, IL-13) were analyzed by a Luminex 200 multiplex immunoassay instrument. Multiple correspondences and linear regression analyses were applied to investigate the relationships between heavy metal exposure and relevant parameters. Results shows Guiyu children had higher levels of Pb, Cd, Hg, As, IL-1β and IL-6, but decreased lymphocyte, IL-1RA and IL-13. Neutrophil count was positively correlated with Pb, Cd and Hg exposure. Anti-inflammatory IL-1RA concentration was negatively related with Pb, Cd, Hg and As, while pro-inflammatory IL-1β and IL-6 were positively correlated with Pb. Guiyu children may have dysregulated immune response and high inflammation risk. Exposure to Pb, Cd, Hg and As could be harmful for immune response and inflammatory regulation. Our finding of decreased IL-RA production in children exposed to Pb, Cd, Hg, and As is novel and could be an opportunity for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的鸿煊完成签到,获得积分10
刚刚
SGI完成签到,获得积分10
刚刚
1秒前
耍酷的白玉完成签到,获得积分10
1秒前
Ava应助超级的抽屉采纳,获得10
1秒前
Dr彭0923完成签到,获得积分10
1秒前
梦之哆啦完成签到,获得积分10
2秒前
deer完成签到,获得积分10
2秒前
2秒前
sy发布了新的文献求助10
2秒前
归971003发布了新的文献求助10
3秒前
大个应助高越采纳,获得10
3秒前
4秒前
CAESARTANG完成签到,获得积分10
4秒前
yo发布了新的文献求助10
5秒前
长弓橙子完成签到,获得积分10
5秒前
zhaoh发布了新的文献求助10
5秒前
西音日尾发布了新的文献求助10
5秒前
今夕是何年完成签到,获得积分10
5秒前
慧慧完成签到,获得积分10
5秒前
科研通AI2S应助susu采纳,获得10
6秒前
obsession完成签到,获得积分10
6秒前
wentao发布了新的文献求助10
6秒前
Dionysus发布了新的文献求助50
7秒前
7秒前
kidult发布了新的文献求助10
7秒前
季定玮发布了新的文献求助10
7秒前
hehe发布了新的文献求助10
7秒前
8秒前
思源应助wangyi采纳,获得10
8秒前
8秒前
wangwangwang123完成签到,获得积分10
8秒前
Galato完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
fxx完成签到,获得积分10
9秒前
研友Bn完成签到 ,获得积分10
9秒前
虚拟的半梦完成签到,获得积分10
10秒前
10秒前
秦磊完成签到,获得积分10
10秒前
弃梦完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966