A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories

关系(数据库) 关系抽取 人工智能 计算机科学 判决 注释 特征(语言学) 信息抽取 机器学习 自然语言处理 情报检索 比例(比率) 数据科学 过程(计算) 数据挖掘 语言学 哲学 物理 量子力学 操作系统
作者
Lixiang Hong,Jinjian Lin,Shuya Li,Fangping Wan,Hui Yang,Tao Jiang,Dan Zhao,Jianyang Zeng
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (6): 347-355 被引量:57
标识
DOI:10.1038/s42256-020-0189-y
摘要

Knowledge about the relations between biomedical entities (such as drugs and targets) is widely distributed in more than 30 million research articles and consistently plays an important role in the development of biomedical science. In this work, we propose a novel machine learning framework, named BERE, for automatically extracting biomedical relations from large-scale literature repositories. BERE uses a hybrid encoding network to better represent each sentence from both semantic and syntactic aspects, and employs a feature aggregation network to make predictions after considering all relevant statements. More importantly, BERE can also be trained without any human annotation via a distant supervision technique. Through extensive tests, BERE has demonstrated promising performance in extracting biomedical relations, and can also find meaningful relations that were not reported in existing databases, thus providing useful hints to guide wet-lab experiments and advance the biological knowledge discovery process. A lot of scientific literature is unstructured, which makes extracting information for biomedical databases difficult. Hong and colleagues show that a distant supervision approach, using latent tree learning and recurrent units, can extract drug–target interactions from literature that were previously unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
角鸮完成签到,获得积分0
1秒前
1秒前
星辰大海应助yqf采纳,获得10
1秒前
甜甜安露完成签到 ,获得积分10
1秒前
2秒前
炙热向南发布了新的文献求助10
2秒前
2秒前
xxxxx完成签到,获得积分10
2秒前
路途完成签到,获得积分20
3秒前
aniu发布了新的文献求助10
3秒前
爆米花应助blueskyzhi采纳,获得10
5秒前
美好斓发布了新的文献求助50
6秒前
CodeCraft应助aria采纳,获得10
6秒前
7秒前
晓槐发布了新的文献求助10
7秒前
xxxxx发布了新的文献求助10
7秒前
smkzw完成签到,获得积分10
7秒前
8秒前
猪猪hero发布了新的文献求助30
8秒前
first完成签到,获得积分10
8秒前
9秒前
hutian发布了新的文献求助10
9秒前
梦里花落声应助ii采纳,获得10
9秒前
FashionBoy应助Charon采纳,获得10
9秒前
斯琪欣发布了新的文献求助50
10秒前
yqf完成签到,获得积分10
10秒前
smkzw发布了新的文献求助10
11秒前
11秒前
离蒲完成签到 ,获得积分10
11秒前
科研通AI5应助fancymao采纳,获得10
11秒前
11秒前
河边草完成签到,获得积分20
11秒前
11秒前
炙热向南发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167192
求助须知:如何正确求助?哪些是违规求助? 4359127
关于积分的说明 13572359
捐赠科研通 4205589
什么是DOI,文献DOI怎么找? 2306477
邀请新用户注册赠送积分活动 1306190
关于科研通互助平台的介绍 1252700