Unsupervised Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian Networks

计算机科学 微服务 跟踪(心理语言学) 异常检测 试验台 人工智能 机器学习 数据挖掘 万维网 操作系统 云计算 哲学 语言学
作者
Ping Liu,Haowen Xu,Qianyu Ouyang,Rui Jiao,Zhekang Chen,Shenglin Zhang,Jiahai Yang,Linlin Mo,Jice Zeng,Wenman Xue,Dan Pei
标识
DOI:10.1109/issre5003.2020.00014
摘要

The anomalies of microservice invocation traces (traces) often indicate that the quality of the microservice-based large software service is being impaired. However, timely and accurately detecting trace anomalies is very challenging due to: 1) the large number of underlying microservices, 2) the complex call relationships between them, 3) the interdependency between the response times and invocation paths. Our core idea is to use machine learning to automatically learn the overall normal patterns of traces during periodic offline training. In online anomaly detection, a new trace with a small anomaly score (computed based on the learned normal pattern) is considered anomalous. With our novel trace representation and the design of deep Bayesian networks with posterior flow, our unsupervised anomaly detection system, called TraceAnomaly, can accurately and robustly detect trace anomalies in a unified fashion. TraceAnomaly has been deployed on 18 online services in a company S. Detailed evaluations on four large online services which contain hundreds of microservices and a testbed which contains 41 microservices show that the recall and precision of TraceAnomaly are both above 0.97, outperforming the existing approach in S (hard-coded rule) by 19.6% and 7.1%, and seven other baselines by 57.0% and 41.6% on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zero完成签到,获得积分10
1秒前
李健的小迷弟应助曾阿牛采纳,获得10
2秒前
哒哒哒完成签到,获得积分10
2秒前
Zhou发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
碧蓝无极发布了新的文献求助10
3秒前
zhoukang完成签到,获得积分10
4秒前
听话的道消完成签到 ,获得积分10
6秒前
wulififi发布了新的文献求助10
7秒前
哒哒哒发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
大个应助2024011023采纳,获得10
11秒前
11秒前
科研通AI6应助优雅的砖头采纳,获得10
12秒前
sxx发布了新的文献求助30
12秒前
13秒前
14秒前
14秒前
独特的初彤完成签到 ,获得积分10
15秒前
16秒前
朝暮完成签到 ,获得积分10
17秒前
史蒂芬张发布了新的文献求助10
18秒前
呐呐呐完成签到,获得积分10
18秒前
丘比特应助笑点低白玉采纳,获得10
18秒前
18秒前
ZYK发布了新的文献求助10
19秒前
MaZ完成签到,获得积分10
19秒前
九千七发布了新的文献求助10
20秒前
Emma完成签到,获得积分10
21秒前
FashionBoy应助火星上小土豆采纳,获得30
21秒前
邓111111发布了新的文献求助10
21秒前
11完成签到,获得积分20
22秒前
22秒前
22秒前
烤麸发布了新的文献求助10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599168
求助须知:如何正确求助?哪些是违规求助? 4684646
关于积分的说明 14835836
捐赠科研通 4666419
什么是DOI,文献DOI怎么找? 2537770
邀请新用户注册赠送积分活动 1505181
关于科研通互助平台的介绍 1470728