One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis.

探索性因素分析 算法 因子(编程语言) 计算机科学 人工智能 机器学习 结构方程建模 程序设计语言
作者
David Goretzko,Markus Bühner
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:25 (6): 776-786 被引量:41
标识
DOI:10.1037/met0000262
摘要

Determining the number of factors is one of the most crucial decisions a researcher has to face when conducting an exploratory factor analysis. As no common factor retention criterion can be seen as generally superior, a new approach is proposed-combining extensive data simulation with state-of-the-art machine learning algorithms. First, data was simulated under a broad range of realistic conditions and 3 algorithms were trained using specially designed features based on the correlation matrices of the simulated data sets. Subsequently, the new approach was compared with 4 common factor retention criteria with regard to its accuracy in determining the correct number of factors in a large-scale simulation experiment. Sample size, variables per factor, correlations between factors, primary and cross-loadings as well as the correct number of factors were varied to gain comprehensive knowledge of the efficiency of our new method. A gradient boosting model outperformed all other criteria, so in a second step, we improved this model by tuning several hyperparameters of the algorithm and using common retention criteria as additional features. This model reached an out-of-sample accuracy of 99.3% (the pretrained model can be obtained from https://osf.io/mvrau/). A great advantage of this approach is the possibility to continuously extend the data basis (e.g., using ordinal data) as well as the set of features to improve the predictive performance and to increase generalizability. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助zzzg采纳,获得10
刚刚
脑洞疼应助孤岛采纳,获得10
刚刚
Akim应助笑点低的咖啡采纳,获得10
1秒前
baixue发布了新的文献求助10
1秒前
Yxs发布了新的文献求助10
1秒前
1秒前
1秒前
温暖的鸿发布了新的文献求助10
1秒前
1秒前
wzx完成签到,获得积分10
2秒前
lxs发布了新的文献求助10
3秒前
milk发布了新的文献求助10
3秒前
英姑应助执意采纳,获得10
3秒前
大力蚂蚁发布了新的文献求助10
4秒前
雨双发布了新的文献求助10
5秒前
英勇明雪完成签到,获得积分10
6秒前
7秒前
ilk666完成签到,获得积分10
7秒前
端庄醉山完成签到 ,获得积分10
7秒前
Ice_zhao发布了新的文献求助10
7秒前
7秒前
悦耳一江完成签到,获得积分10
8秒前
开心的花卷完成签到,获得积分10
8秒前
8秒前
9秒前
半生瓜完成签到,获得积分10
10秒前
似宁发布了新的文献求助10
10秒前
ding应助折纸为鹤采纳,获得10
11秒前
694255360发布了新的文献求助10
11秒前
tanchihao完成签到,获得积分10
12秒前
w233完成签到,获得积分10
12秒前
13秒前
半生瓜发布了新的文献求助10
13秒前
14秒前
hanabi完成签到,获得积分10
14秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838822
求助须知:如何正确求助?哪些是违规求助? 3381252
关于积分的说明 10517468
捐赠科研通 3100694
什么是DOI,文献DOI怎么找? 1707708
邀请新用户注册赠送积分活动 821857
科研通“疑难数据库(出版商)”最低求助积分说明 773033