An Innovative Formulation Tightening Approach for Job-Shop Scheduling

整数规划 凸壳 数学优化 线性规划 二进制数 调度(生产过程) 预处理器 作业车间调度 整数(计算机科学) 计算机科学 数学 正多边形 人工智能 地铁列车时刻表 操作系统 算术 程序设计语言 几何学
作者
Bing Yan,Mikhail A. Bragin,Peter B. Luh
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2526-2539 被引量:2
标识
DOI:10.1109/tase.2021.3088047
摘要

Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an integer linear programming (ILP) problem to take advantages of popular mixed-integer linear programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may experience difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data preprocessing stage, then a solution can be obtained by using linear programming (LP) methods without combinatorial difficulties. The tightening process, however, is fundamentally challenging because of the existence of integer variables. In this article, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data preprocessing stage. It is a major advancement of our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary and continuous variables only, it is proved that the vertices of the convex hull can be obtained based on vertices of the LP problem after relaxing binary requirements. These vertices are then converted to tightened constraints for general use. This approach significantly improves our previous results on tightening individual operations. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other complex ILP and MILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved. Note to Practitioners —Scheduling is an important but difficult problem in planning and operation of job shops. The problem has been recently formulated in an integer linear programming (ILP) form to take advantage of popular mixed-integer linear programming methods. Given an ILP problem, there must exist a linear programming (LP) formulation so that all of its vertices are also the vertices to the ILP problem. If such an LP problem can be found in the data preprocessing stage, then the corresponding ILP problem is tight and can be solved by using an LP method without difficulties. In this article, an innovative and systematic approach is established to tighten the formulations of individual parts, each with one or multiple operations. It is a major advancement of our previous work on problems with binary and continuous variables by novel exploitation of the relationship between integer and binary variables in job-shop scheduling. The resulting tightened constraints are characterized by part parameters and the length of the scheduling horizon and can be easily adjusted for other data sets. Results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other complex ILP and MILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱念波完成签到,获得积分10
1秒前
3秒前
4秒前
忽忽发布了新的文献求助10
4秒前
5秒前
6秒前
月月月鸟伟完成签到,获得积分10
6秒前
MOS发布了新的文献求助10
7秒前
勤劳糜完成签到 ,获得积分10
8秒前
图图发布了新的文献求助30
9秒前
跳跃的语柔完成签到 ,获得积分10
13秒前
None完成签到 ,获得积分10
13秒前
17秒前
神内小天使完成签到,获得积分10
17秒前
章鱼哥想毕业完成签到 ,获得积分10
20秒前
zhaoshasha发布了新的文献求助10
23秒前
24秒前
Brave完成签到,获得积分20
24秒前
25秒前
随性完成签到,获得积分10
26秒前
图图完成签到,获得积分10
26秒前
27秒前
夜雨清痕y发布了新的文献求助10
28秒前
Brave发布了新的文献求助10
32秒前
Davey1220完成签到,获得积分10
36秒前
ningmeng完成签到,获得积分10
38秒前
研友Bn完成签到 ,获得积分10
38秒前
yy完成签到,获得积分10
38秒前
zhaoshasha完成签到,获得积分20
39秒前
45秒前
48秒前
沉默采波完成签到 ,获得积分10
50秒前
czz014发布了新的文献求助10
55秒前
笨笨忘幽发布了新的文献求助10
56秒前
jinghong完成签到 ,获得积分10
57秒前
334niubi666完成签到 ,获得积分10
59秒前
Chandler完成签到,获得积分10
1分钟前
科研通AI2S应助WYN采纳,获得10
1分钟前
zhoahai完成签到 ,获得积分10
1分钟前
畅快芝麻完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734