材料科学
电化学
纳米结构
金属有机骨架
过氧化氢
金属
无机化学
电极
化学工程
纳米技术
冶金
有机化学
化学
物理化学
工程类
吸附
作者
Duanping Sun,Dingcao Yang,Jianfei Wei,Bing Liu,Zuanguang Chen,Luyong Zhang,Jing Lü
标识
DOI:10.1021/acsami.0c11269
摘要
Metal-organic frameworks (MOFs) have been widely used as supporting materials to load or encapsulate metal nanoparticles for electrochemical sensing. Herein, the influences of morphology on the electrocatalytic activity of Co-containing zeolite imidazolate framework-67 (ZIF-67) as supporting materials were studied. Three types of morphologies of MOF ZIF-67 were facilely synthesized by changing the solvent because of the influence of the polar solvent on the nucleation and preferential crystal growth. Two-dimensional (2D) ZIF-67 with microplate morphology and 2D ultrathin ZIF-67 nanosheets were obtained from pure H2O (H-ZIF-67) and a mixed solution of dimethylformamide and H2O (D-ZIF-67), respectively. Three-dimensional ZIF-67 with rhombic dodecahedron morphology was obtained from pure methanol (M-ZIF-67). Then, one-step electrodeposition of silver nanostructures on ZIF-67-modified glassy carbon electrode (Ag/ZIF-67/GCE) was performed for the reduction of hydrogen peroxide (H2O2). Cyclic voltammetry can be used to investigate the electrocatalytic activity of Ag/ZIF-67/GCE, and Ag/H-ZIF-67/GCE displayed the best electrocatalytic property than Ag/D-ZIF-67/GCE and Ag/M-ZIF-67/GCE. The electrochemical H2O2 sensor showed two wide linear ranges of 5 μM to 7 mM and 7 to 67 mM with the sensitivities of 421.4 and 337.7 μA mM-1 cm-2 and a low detection limit of 1.1 μM. In addition, the sensor exhibited good selectivity, high reproducibility, and stability. Furthermore, it has been utilized for real-time detection of H2O2 from HepG2 human liver cancer cells. This work provides a novel strategy for enhancing the detection performance of electrochemical sensors by changing the crystalline morphologies of supporting materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI