Exploration of an Independent Training Framework for Speech Emotion Recognition

计算机科学 Softmax函数 人工智能 Mel倒谱 人工神经网络 特征提取 语音识别 模式识别(心理学) 分类器(UML) 特征(语言学) 语言学 哲学
作者
Shunming Zhong,Baoxian Yu,Han Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 222533-222543 被引量:13
标识
DOI:10.1109/access.2020.3043894
摘要

Speech emotion recognition (SER) plays an indispensable role in human-computer interaction tasks, where the ultimate performance is determined by features, such as empirically learned features (ELFs) and automatically learned features (ALFs). Although the fusion of both ELFs and ALFs can complement some new features for SER, the fused training within one softmax layer is inappropriate due to the different performance of using either ELFs or ALFs for emotion recognition. Based on this consideration, this paper proposes an independent training framework that can fully enjoy the complementary advantages of human knowledge and powerful learning ability of deep learning models. Specifically, we first feed Mel frequency cepstral coefficient and openSMILE features respectively into a pair of independent models, which are composed of an attention-based convolution long short-term memory neural network and a fully connected neural network. We then design a feedback mechanism for each model to extract ALFs and ELFs independently, where hard example mining and re-training with a hard example loss are applied to focus the feature extraction on hard examples during training. Finally, a classifier is adopted to distinguish emotion by using both the independent features of ALFs and ELFs. Based on extensive experiments on three public speech emotion datasets (IEMOCAP, EMODB, and CASIA), we show that the proposed independent training framework outperforms the conventional feature fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
7秒前
教授完成签到 ,获得积分10
9秒前
Tsuzuri完成签到,获得积分10
9秒前
谢某某102097完成签到,获得积分10
9秒前
luoguixun发布了新的文献求助30
10秒前
充电宝应助南岸娜娜采纳,获得10
10秒前
10秒前
天天快乐应助昀颂采纳,获得10
11秒前
暗香完成签到,获得积分10
11秒前
映泧完成签到,获得积分10
12秒前
kjj发布了新的文献求助10
12秒前
14秒前
15秒前
18秒前
18秒前
owoow完成签到,获得积分10
18秒前
19秒前
忧心的萃发布了新的文献求助10
20秒前
怡yi完成签到,获得积分10
20秒前
21秒前
luoguixun完成签到,获得积分10
22秒前
3-HP发布了新的文献求助10
22秒前
Cici发布了新的文献求助10
23秒前
mrmrer完成签到,获得积分10
24秒前
执着时光发布了新的文献求助10
25秒前
夏keqiang完成签到,获得积分10
27秒前
慕青应助明天开始戒绿茶采纳,获得10
29秒前
29秒前
29秒前
华仔应助Cici采纳,获得10
29秒前
30秒前
31秒前
执着时光完成签到,获得积分10
32秒前
星星完成签到,获得积分10
33秒前
南岸娜娜发布了新的文献求助10
33秒前
33秒前
柔弱绝施发布了新的文献求助10
35秒前
lierikafei发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761956
求助须知:如何正确求助?哪些是违规求助? 4101750
关于积分的说明 12692192
捐赠科研通 3817677
什么是DOI,文献DOI怎么找? 2107308
邀请新用户注册赠送积分活动 1131973
关于科研通互助平台的介绍 1011013