计算机科学
认证(法律)
人工智能
模式(计算机接口)
生物识别
面部识别系统
面子(社会学概念)
计算机视觉
不变(物理)
鉴定(生物学)
无监督学习
模式识别(心理学)
人机交互
计算机安全
数学
数学物理
植物
生物
社会学
社会科学
作者
Minsu Kim,Hong Joo Lee,Sangmin Lee,Yong Man Ro
标识
DOI:10.1109/icip40778.2020.9191052
摘要
Deep learning-based video facial authentication has limitations when it comes to real-world applications, due to large mode variations such as illumination, pose, and eyeglasses variations in real-life situations. Many of existing mode-invariant facial authentication methods need labels of each mode. However, the label information could not be always available in practice. To alleviate this problem, we develop an unsupervised mode disentangling method for video facial authentication. By matching both disentangled identity features and dynamic features of two facial videos, our proposed method shows significant face verification and identification performances on three publicly available datasets, KAIST-MPMI, UVA-NEMO, and YTF.
科研通智能强力驱动
Strongly Powered by AbleSci AI