稳健性(进化)
计算机科学
背景减法
人工智能
适应性
前景检测
噪音(视频)
随机投影
计算机视觉
模式识别(心理学)
算法
运动检测
帧(网络)
运动(物理)
像素
图像(数学)
生态学
电信
生物化学
化学
生物
基因
作者
Yu Liu,Huaxin Xiao,Wei Wang,Maojun Zhang
标识
DOI:10.1109/icassp.2015.7178233
摘要
The applicability and performance of motion detection methods dramatically degrade with the increasing noise. In this paper, we propose a robust dictionary-based background subtraction approach, which formulates background modeling as a linear and sparse combination of atoms in a pre-learned dictionary. Motion detection is then implemented to compare the difference between sparse representations of the current frame and the background model. The projection of noise over the dictionary being irregular and random guarantees the adaptability of our approach. Experimental results on synthetic and real noisy videos demonstrate the robustness of the proposed approach compared to other methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI