We observe chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (called as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. Interestingly, we also recorded a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrates from one to another population. To test the generality of the coupling configuration, we present another example of bistable system, the van der Pol-Duffing system where the chimeralike states are observed, however, the coherent population is periodic or quasiperiodic and the incoherent population is of chaotic in nature. Furthermore, we apply the coupling to a network of chaotic Rössler system where we find the chaos-chaos chimeralike states.