Comparing the Effectiveness of Brain Structural Imaging, Resting-state fMRI, and Naturalistic fMRI in Recognizing Social Anxiety Disorder in Children and Adolescents

心理学 神经影像学 焦虑 社交焦虑 静息状态功能磁共振成像 模式 大脑活动与冥想 发展心理学 临床心理学 神经科学 精神科 脑电图 社会科学 社会学
作者
Qinjian Zhang,Baobin Li,Shuyu Jin,Wenjing Liu,Jingjing Liu,Shuqi Xie,Lei Zhang,Yinzhi Kang,Yue Ding,Xiaochen Zhang,Wenhong Cheng,Zhi Yang
出处
期刊:Psychiatry Research: Neuroimaging [Elsevier BV]
卷期号:323: 111485-111485 被引量:13
标识
DOI:10.1016/j.pscychresns.2022.111485
摘要

Social anxiety disorder (SAD) is a common anxiety disorder in childhood and adolescence. Studies on SAD in adults have reported both structural and functional aberrancies of the brain at the group level. However, evidence has shown differences in anxiety-related brain abnormalities between adolescents and adults. Since children and adolescents can afford limited scan time, optimizing the scan tasks is essential for SAD research in children and adolescents. Thus, we need to address whether brain structure, resting-state fMRI, and naturalistic imaging enable individualized identification of SAD in children and adolescents, which measurement is more effective, and whether pooling multi-modal features can improve the identification of SAD. We comprehensively addressed these questions by building machine learning models based on parcel-wise brain features. We found that naturalistic fMRI yielded higher classification accuracy (69.17%) than the other modalities and the classification performance showed dependence on the contents of the movie. The classification models also identified contributing brain regions, some of which exhibited correlations with the symptoms scores of SAD. However, pooling brain features from the three modalities did not help enhance the classification accuracy. These results support the application of carefully designed naturalistic imaging in recognizing children and adolescents at risk of SAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助yu采纳,获得10
刚刚
刚刚
yyawkx完成签到,获得积分10
1秒前
夷灭完成签到,获得积分10
1秒前
1秒前
苹果映菱发布了新的文献求助10
2秒前
科研通AI5应助zing采纳,获得10
2秒前
彭于晏应助nusiew采纳,获得10
2秒前
3秒前
4秒前
伶俐涵菱完成签到,获得积分10
4秒前
学阀小智发布了新的文献求助10
4秒前
涤尘完成签到,获得积分10
4秒前
熙熙发布了新的文献求助10
5秒前
YYMY2022发布了新的文献求助10
5秒前
风趣的可兰完成签到 ,获得积分10
5秒前
VISIN完成签到 ,获得积分10
5秒前
7秒前
Jimmy发布了新的文献求助10
7秒前
苹果映菱完成签到,获得积分20
7秒前
8秒前
嘻嘻嘻完成签到,获得积分10
8秒前
君君发布了新的文献求助10
9秒前
满意的盼柳完成签到,获得积分10
9秒前
WSY发布了新的文献求助10
9秒前
10秒前
10秒前
苏昊海发布了新的文献求助10
11秒前
传奇3应助超帅的店员采纳,获得10
12秒前
13秒前
Alicia发布了新的文献求助10
13秒前
SASA发布了新的文献求助10
14秒前
嘻嘻嘻发布了新的文献求助10
16秒前
16秒前
sskr完成签到,获得积分10
16秒前
丘比特应助现代雪柳采纳,获得10
17秒前
李爱国应助Duan采纳,获得10
17秒前
小梦完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833048
求助须知:如何正确求助?哪些是违规求助? 3375470
关于积分的说明 10489248
捐赠科研通 3095117
什么是DOI,文献DOI怎么找? 1704226
邀请新用户注册赠送积分活动 819877
科研通“疑难数据库(出版商)”最低求助积分说明 771661