Lead generation of cysteine based mesenchymal epithelial transition (c-Met) kinase inhibitors: Using structure-based scaffold hopping, 3D-QSAR pharmacophore modeling, virtual screening, molecular docking, and molecular dynamics simulation

药效团 虚拟筛选 李宾斯基五定律 数量结构-活动关系 分子动力学 计算生物学 对接(动物) 化学 码头 计算机科学 生物信息学 立体化学 计算化学 生物 生物化学 生物信息学 医学 护理部 基因
作者
Asmaa Raafat,Samar Mowafy,Sahar M. Abou‐Seri,Marwa A. Fouad,Nahla A. Farag
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105526-105526 被引量:11
标识
DOI:10.1016/j.compbiomed.2022.105526
摘要

Cysteine-based mesenchymal-epithelial transition (c-Met) is a receptor tyrosine kinase that plays a definitive role during cancer progression and was identified as a possible target for anti-angiogenesis drugs. In the present study, different protocols of computer-based drug design were performed. Construction of predictive pharmacophore model using HypoGen algorithm resulted in a validated model of four features of positive ionizable, hydrogen bond acceptor, hydrophobic, and ring aromatic features with a correlation coefficient of 0.87, a configuration cost of 14.95, and a cost difference of 357.92. The model revealed a promising predictive power and had >90% probability of representing true correlation with the activity data. The model was established using Fisher's validation test at the 95% confidence level and test set prediction (r = 0.96), furthermore, the model was validated by mapping of set of compounds undergoing clinical trials as class Ⅱ c-met inhibitors. The generated valid pharmacophore model was then anticipated for virtual screening of three data bases. Moreover, scaffold hopping using replace fragments protocol was implemented. Hits generated were filtered according to Lipinski's rule; 510 selected hits were anatomized and subjected to molecular docking studies into the crystal structure of c-Met kinase. The good correlation between docking scores and ligand pharmacophore mapping fit values provided a reliable foundation for designing new potentially active candidates that may target c-Met kinase. Eventually, eight hits were selected as potential leads. Subsequently, seven (Hits) have displayed a higher dock score and demonstrated key residue interactions with stable molecular dynamics simulation. Therefore, these c-Met kinase inhibitors may further serve as new chemical spaces in designing new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飞艇发布了新的文献求助10
2秒前
Ico发布了新的文献求助20
3秒前
3秒前
崔佳鑫完成签到 ,获得积分10
3秒前
5秒前
6秒前
Ava应助zhaop采纳,获得10
6秒前
归尘发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
8秒前
mengran发布了新的文献求助30
10秒前
11秒前
满锅发布了新的文献求助10
11秒前
11秒前
无花果应助愤怒的铁身采纳,获得10
12秒前
14秒前
14秒前
吴荣方完成签到,获得积分10
14秒前
wanci应助小粉红wow~~~采纳,获得10
14秒前
14秒前
15秒前
听聆发布了新的文献求助20
15秒前
小橘子关注了科研通微信公众号
16秒前
苯环羟基发布了新的文献求助10
17秒前
17秒前
wenwen完成签到,获得积分10
18秒前
18秒前
Nichols完成签到,获得积分10
20秒前
zhaop发布了新的文献求助10
21秒前
姜昕发布了新的文献求助10
22秒前
22秒前
23秒前
小粉红wow~~~完成签到,获得积分10
24秒前
Moonber完成签到,获得积分10
24秒前
六七关注了科研通微信公众号
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
25秒前
鹿小鲸发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075983
求助须知:如何正确求助?哪些是违规求助? 4295640
关于积分的说明 13385047
捐赠科研通 4117410
什么是DOI,文献DOI怎么找? 2254869
邀请新用户注册赠送积分活动 1259467
关于科研通互助平台的介绍 1192218