亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting breast cancer recurrence and metastasis risk by integrating color and texture features of histopathological images and machine learning technologies

乳腺癌 医学 转移 肿瘤科 乳腺摄影术 内科学 癌症 人工智能 Boosting(机器学习) 放射科 机器学习 计算机科学
作者
Xinyu Liu,Peng Yuan,Ruolin Li,Dejun Zhang,Junda An,Jie Ju,Chenyang Liu,Fuquan Ren,Rui Hou,Yushuang Li,Jialiang Yang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105569-105569 被引量:39
标识
DOI:10.1016/j.compbiomed.2022.105569
摘要

About 30%-40% breast cancer patients suffer from recurrence and metastasis, even after targeted therapy like trastuzumab. Since breast cancer recurrence and metastasis are intrinsically related to mortality, it is critical to predict the recurrence and metastasis risk of an individual patient, which is essential for adjuvant therapy and early intervention. In this study, we developed a novel breast cancer recurrence and metastasis risk assessment framework from histopathological images using image features and machine learning technologies. The detection framework was applied on a manually collected clinical dataset from the Cancer Hospital, Chinese Academy of Medical Sciences, consisting of 127 breast cancer patients with known prognostic information; and further independently validated on 88 formalin-fixed, paraffin-embedded (FFPE) samples downloaded from The Cancer Genome Atlas (TCGA) with known recurrence and metastasis status. As a result, the XGBoost-based method performed well using only 8 texture and color features, obtained internal testing AUC of 0.75 on clinical data and external testing AUC of 0.72 on TCGA FFPE data, respectively. In addition, this study found two important potential predictors, i.e., the second moment of the B color component and the detail level mean square error of the wavelet multi-sub-bands co-occurrence matrix. Our study benchmarked the performances of histopathological image features and machine learning technologies in the recurrence and metastasis risk assessment, and holds promise for relieving pathologists' workload and boosting the survival chances of the breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心涵山完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
9秒前
17秒前
StonesKing发布了新的文献求助10
22秒前
月儿完成签到 ,获得积分10
1分钟前
老石完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
ccc2应助科研通管家采纳,获得40
1分钟前
odell完成签到,获得积分10
2分钟前
2分钟前
大模型应助有魅力的不评采纳,获得10
2分钟前
3分钟前
科研通AI5应助DaYongDan采纳,获得10
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
3分钟前
Orange应助CMUSK采纳,获得10
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
4分钟前
平常的问雁完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
CMUSK发布了新的文献求助10
4分钟前
4分钟前
勤恳依霜发布了新的文献求助10
4分钟前
4分钟前
4分钟前
唐泽雪穗应助勤恳依霜采纳,获得10
4分钟前
5分钟前
Omni完成签到,获得积分10
5分钟前
朴素小鼠标完成签到,获得积分10
5分钟前
5分钟前
jyy发布了新的文献求助30
5分钟前
5分钟前
5分钟前
DaYongDan发布了新的文献求助10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851917
求助须知:如何正确求助?哪些是违规求助? 4150328
关于积分的说明 12856905
捐赠科研通 3898501
什么是DOI,文献DOI怎么找? 2142472
邀请新用户注册赠送积分活动 1162233
关于科研通互助平台的介绍 1062512